2.1.2.1 a -nayf 4:yb 3+,er 3+上转换纳米颗粒............................................................................................................................................................................................................................................................. 30 2.1.2.2 b -nayf 4:yb 3+,yb 3+,er 3+ ucnps ................................................................................................................................................................................... UCNPs ........................ 32 2.1.2.4 Synthesis of Rod Shaped NaCeF 4 : Yb 3+ , Er 3+ UCNPs ..................................... 32 2.1.2.5 Synthesis of b -NaYF 4 : Fe 3+ , Yb 3+ , Er 3+ UCNPs ............................................... 33 2.1.3 Synthesis and Cleavage Demonstration of ROS Sensitive Thioketal Linker ......................................................................................................................
摘要:由有机半导体和无机量子点 (QD) 组成的混合物适用于许多光电应用和设备。然而,有机 QD 混合物中的各个组分在薄膜加工过程中很容易聚集和相分离,从而损害其结构和电子特性。在这里,我们展示了一种 QD 表面工程方法,该方法使用与有机半导体主体材料相匹配的电子活性、高溶解度半导体配体来实现分散良好的无机 - 有机混合薄膜,其特征是通过 X 射线和中子散射以及电子显微镜来表征的。这种方法保留了有机相和 QD 相的电子特性,并在它们之间创建了优化的界面。我们在两个新兴应用中对此进行了举例说明,即基于单线态裂变的光子倍增 (SF-PM) 和基于三线态 - 三线态湮没的光子上转换 (TTA-UC)。稳态和时间分辨光谱表明,三线态激子可以以接近 1 的速度高效地跨有机 - 无机界面传输,而有机薄膜在有机相中保持高效的 SF(产率为 190%)。通过改变有机和无机成分之间的相对能量,在 790 nm NIR 激发下观察到黄色上转换发射。总体而言,我们提供了一种高度通用的方法来克服有机半导体与 QD 混合的长期挑战,这对许多光学和光电应用都具有重要意义。■ 简介
摘要:由有机半导体和无机量子点 (QD) 组成的混合物适用于许多光电应用和设备。然而,有机 QD 混合物中的各个组分在薄膜加工过程中很容易聚集和相分离,从而损害其结构和电子特性。在这里,我们展示了一种 QD 表面工程方法,该方法使用与有机半导体主体材料相匹配的电子活性、高溶解度半导体配体来实现分散良好的无机 - 有机混合薄膜,其特征是通过 X 射线和中子散射以及电子显微镜来表征的。这种方法保留了有机相和 QD 相的电子特性,并在它们之间创建了优化的界面。我们在两个新兴应用中对此进行了举例说明,即基于单线态裂变的光子倍增 (SF-PM) 和基于三线态 - 三线态湮没的光子上转换 (TTA-UC)。稳态和时间分辨光谱表明,三线态激子可以以接近 1 的速度高效地跨有机 - 无机界面传输,而有机薄膜在有机相中保持高效的 SF(产率为 190%)。通过改变有机和无机成分之间的相对能量,在 790 nm NIR 激发下观察到黄色上转换发射。总体而言,我们提供了一种高度通用的方法来克服有机半导体与 QD 混合的长期挑战,这对许多光学和光电应用都具有重要意义。■ 简介
3. LDD-IFE 技术问题——有几种方法可以提供 LPI 抑制和辐射均匀性所需的带宽。每个激光源可能产生所需的全部带宽、部分带宽或跨越所需光谱的离散波长。宽带非相干系统因过大带宽导致的时间调制而引发激光损伤问题,而宽带频率上转换为紫外波长具有挑战性,因此在离散波长下工作的激光器应该更简单、更有优势,尽管考虑到 IFE 反应堆容器可用立体角的实际限制,可能需要光谱光束组合 [19] 将所有激光辐射传送到目标。基于 OPA 或激光的系统可以为 LDD-IFE 提供所需的宽带放大。
3。出于这些规则的目的,除非上下文另有要求:“ ACT”是指《电力法》; “权威”是指根据《能源和水公用事业规定法规法》建立的能源和水的监管机构; “避免成本”是指DNO本身会产生电力或从Anotl1er来源采购的成本; “备用关税是指DNO出售给SPP的电力关税,目的是为了在发电厂的启动期间提供SPP的电气负载;“批量供应关税”意味着将电力批量出售给Dnowho的电力征收税务机构可能会在零售机构上转换电力的机制指南,“清洁机制指南”。 (UNFCCC);“商业运营日期”应在SPPA中指定;
在传统导电设备中,用户必须建立物理连接,以将电源传递给车辆。连接是通过将车辆连接器与车辆入口物理交配的。该连接可用于传递交替电流(AC)电源,该电流需要在电压上转换为导向电流(DC)以给车辆电池充电。或者,与车辆的连接可用于直接输送直流电源,该功率可用于为车辆电池充电而无需使用车载充电器。带有交流电输出的外部设备通常称为电动汽车供应设备(EVSE),因为它不会直接为电池充电,而是为电动汽车提供电力。带有直流输出的外部设备称为电动汽车充电设备或充电器。
在遗传学中,突变有两种类型(一个核苷酸被另一个核苷酸替换)。转换是将嘌呤核苷酸(两个环)变为另一个嘌呤(A ↔ G),或将嘧啶核苷酸(一个环)变为另一个嘧啶(C ↔ T)。所有其他用嘌呤取代嘧啶或用嘧啶取代嘌呤的突变称为颠换。尽管理论上只有四种可能的转换和八种可能的颠换,但实际上转换比颠换更有可能,因为用一个单环结构取代另一个单环结构比用双环取代单环更有可能。此外,转换不太可能导致氨基酸取代(由于碱基对摆动),因此更有可能在群体中以静默取代的形式持续存在。
Yb 3+ /Er 3+ 共掺杂上转换材料广泛用于发光强度比 (LIR) 测温,其中 Er 3+ 掺杂离子的绿色发光跃迁 ( 2 H 11/2 → 4 I 15/2 和 4 S 3/2 → 4 I 15/2 ) 的相对强度比随温度而变化。在本文中,我们报告了从 2 H 9/2 能级到中间 4 I 13/2 能级的额外跃迁的影响,该跃迁与通常用于 LIR 测温的绿色发光重叠。2 H 9/2 → 4 I 13/2 发射与 4 S 3/2 → 4 I 15/2 发射大量重叠,并且对泵浦功率更敏感。为了获得准确的温度读数,需要仔细选择用于积分 2 H 11/2 → 4 I 15/2 和 4 S 3/2 → 4 I 15/2 发光的波长间隔。
Yb 3+ /Er 3+ 共掺杂上转换材料广泛用于发光强度比 (LIR) 测温,其中 Er 3+ 掺杂离子的绿色发光跃迁 ( 2 H 11/2 → 4 I 15/2 和 4 S 3/2 → 4 I 15/2 ) 的相对强度比随温度而变化。在本文中,我们报告了从 2 H 9/2 能级到中间 4 I 13/2 能级的额外跃迁的影响,该跃迁与通常用于 LIR 测温的绿色发光重叠。2 H 9/2 → 4 I 13/2 发射与 4 S 3/2 → 4 I 15/2 发射大量重叠,并且对泵浦功率更敏感。为了获得准确的温度读数,需要仔细选择用于积分 2 H 11/2 → 4 I 15/2 和 4 S 3/2 → 4 I 15/2 发光的波长间隔。