大多数卵巢癌病例,无论亚型如何 [8]。PIK3CA 突变被认为是驱动突变,为高级别浆液性癌 (HGSC) 提供转化优势 [9]。多变量生存分析显示,PI3K 蛋白表达与晚期 HGSC 的较差生存率相关 [10]。此外,一些研究表明,PI3K 通路中的突变率,尤其是 AKT 和 p70S6K 中的突变率,包括错义突变和扩增,与较高的化学耐药率相关 [11,12]。化学增敏可以通过下调 PI3K 和/或其下游效应物 AKT 和 mTORC1 来实现 [13-15]。PI3K 在 OvCa 中的活性增加及其作为几种促癌通路的枢纽的作用,解释了其在癌症进展中的许多影响,包括致癌转化、
尽管癌症治疗的最新进展显著改善了患者的预后,但耐药性仍然是一项重大挑战。针对程序性细胞死亡是抗肿瘤药物开发的主要方法。程序性细胞死亡 (PCD) 的失调导致对多种癌症疗法产生耐药性。Yes 相关蛋白 (YAP) 及其同源物 TAZ 是 Hippo 通路的主要下游效应物,在多种人类恶性肿瘤中被异常激活。Hippo-YAP 通路最初在果蝇中发现,在人类中保存良好,在调节细胞命运、组织生长和再生方面起着决定性作用。YAP 信号的激活已成为促进癌细胞增殖、转移和耐药性的关键机制。了解 YAP/TAZ 信号网络在 PCD 和耐药性中的作用可以促进开发有效的癌症治疗策略。
高血糖是胰岛素抵抗,β-细胞糖毒性和糖尿病血管并发症的危险因素。我们提出了假设,己糖酶连接的糖酵解过载和未定义的糖酵解。己糖酶(HKS)催化葡萄糖代谢的第一步。通过HKS糖酵解的糖酵解增加而增加的糖溶性酶的活性增加时,葡萄糖代谢的呼吸量增加 - 未针对糖酵解的糖酵解的活性增加 - 糖酵解中间体的水平升高,与过度溶液的效应途径和病原体的效应途径增加。hk1在尤格糖症中含有葡萄糖饱和,而它是主要的HK,可以提供基底糖酵解液,而无需糖酵解。hk2具有相似的饱和特性,除了在持续性高血糖中,它通过高细胞内葡萄糖浓度稳定在蛋白水解中,增加了HK活性并启动糖酵解过载和未进行的糖酵解。这推动了糖尿病血管并发症的发展。在空腹葡萄糖受损中,骨骼肌和脂肪组织中类似的HK2 - 连接的外周糖组织的糖酵解驱动了周围胰岛素抵抗的发展。葡萄糖激酶(GCK或HK4)连接的糖酵解超负荷和未定义的糖酵解发生在肝细胞和β细胞中持续性高血糖中,有助于肝胰岛素抵抗和β-纤维蛋白耐药性,并导致beta-cell glucotoxicity glucotoxicity glucotoxicity glucotoxicity glucotoxicity typer typer ty diabetes of type ty diabetess of type type type type type type。校正HK2失调是一种新的治疗靶标。 纠正胰岛素的药物治疗校正HK2失调是一种新的治疗靶标。纠正胰岛素hk连接的外糖糖溶解的下游效应子途径是线粒体功能障碍,而活性氧(ROS)形成增加;己糖胺,蛋白激酶C和双骨应激途径的激活;并增加了MLX/Mondo A信号传导。线粒体功能障碍和ROS增加的提议是高血糖中代谢功能障碍的引发剂,但它是多个下游效应途径之一。
组蛋白去乙酰化酶 (HDAC) 是一类锌 (Zn) 依赖性金属酶,负责表观遗传修饰。HDAC 主要与在 DNA 水平上调节基因表达的组蛋白有关。这种严格的调节由组蛋白和非组蛋白的乙酰化 [通过组蛋白乙酰转移酶 (HAT)] 和去乙酰化 (通过 HDAC) 控制,这些蛋白会改变 DNA 的卷曲状态,从而影响基因表达作为下游效应。在过去的二十年里,HDAC 得到了广泛的研究,并被应用于一系列疾病,其中 HDAC 失调与疾病的出现和进展密切相关 - 最突出的是癌症、神经退行性疾病、艾滋病毒和炎症性疾病。HDAC 作为这些生化途径的调节剂参与其中,使其成为一个有吸引力的治疗靶点。本综述总结了为创造 HDAC 抑制剂 (HDACis),特别是 I 类 HDAC 而做出的药物开发努力,重点关注这些抑制剂的药物化学、结构设计和药理学方面。
摘要:香叶基香叶基化(GGylation)是信号蛋白的一个脂质修饰过程,目前关于GGylation信号对胃癌细胞增殖和迁移的影响知之甚少。本研究发现,甲羟戊酸通路抑制剂阿托伐他汀和香叶基香叶基转移酶I抑制剂GGTI-298抑制GGylation可抑制胃癌AGS细胞的增殖和迁移。在寻找信号通路作用的过程中,我们观察到转录激活因子、hippo通路下游效应子YAP被GGylation抑制,通过检测其已知靶基因CYR61和CTGF的mRNA水平及其向细胞核的转位来评估。 shRNA敲低YAP对胃癌AGS细胞增殖和迁移的影响与抑制GGylation类似,提示GGylation信号通过激活YAP促进胃癌细胞增殖和迁移,本研究为胃癌治疗提供了一种潜在的新靶向途径。
骨肉瘤 (OS) 是一种原发性恶性骨肿瘤,具有很高的肿瘤转移和复发率。尽管已知 Akt/PKB 信号通路在肿瘤发生中起关键作用,但细胞周期蛋白依赖性蛋白激酶样 3 (CDKL3) 在 OS 进展中的作用仍然很大程度上难以捉摸。我们已经证明了 CDKL3 在 OS 人类标本中的高表达水平,并全面研究了 CDKL3 在体外和体内促进 OS 进展中的作用。我们发现 CDKL3 调节 Akt 活化及其下游效应,包括细胞生长和自噬。OS 标本中 CDKL3 的上调似乎与 Akt 活化和较短的总体患者生存期有关(P = 0.003)。我们的研究结果发现 CDKL3 是一种关键的调节器,它通过增强 Akt 活化来刺激 OS 进展。 CDKL3 既是 OS 预后的生物标志物,也是精准医疗中通过靶向 CDKL3 来治疗 Akt 过度激活的 OS 的潜在治疗靶点。
骨肉瘤 (OS) 是一种原发性恶性骨肿瘤,具有很高的肿瘤转移和复发率。尽管已知 Akt/PKB 信号通路在肿瘤发生中起关键作用,但细胞周期蛋白依赖性蛋白激酶样 3 (CDKL3) 在 OS 进展中的作用仍然很大程度上难以捉摸。我们已经证明了 CDKL3 在 OS 人类标本中的高表达水平,并全面研究了 CDKL3 在体外和体内促进 OS 进展中的作用。我们发现 CDKL3 调节 Akt 活化及其下游效应,包括细胞生长和自噬。OS 标本中 CDKL3 的上调似乎与 Akt 活化和较短的总体患者生存期有关(P = 0.003)。我们的研究结果发现 CDKL3 是一种关键的调节器,它通过增强 Akt 活化来刺激 OS 进展。 CDKL3 既是 OS 预后的生物标志物,也是精准医疗中通过靶向 CDKL3 来治疗 Akt 过度激活的 OS 的潜在治疗靶点。
作为 Hippo 信号通路的核心致瘤下游效应物,YAP/TAZ 和 TEAD 转录因子家族代表了癌症研究中药物发现工作的有吸引力的目标。在胸膜间皮瘤的背景下尤其如此,其中有许多最近的临床前发展和临床试验评估了 TEAD 抑制剂的疗效。抑制剂的范围显示出巨大的前景,但迄今为止对其性能的比较有限。在这里,我们开发了一个高内容管道,可以对目前开发的 YAP/TAZ-TEAD 抑制剂进行比较分析。我们利用同源细胞模型,使我们能够检查抑制剂的特异性。我们确定了 Hippo 通路转录模块的遗传补偿,这对治疗靶向有影响,并实施细胞绘画以开发详细的形态分析管道,从而可以进一步表征、量化和分析脱靶效应。我们的管道是可扩展的,使我们能够在临床相关细胞模型中建立癌症相关检测中的特异性和比较效力。
已经知道的是:tead4是小鼠胚胎植入前开发过程中表达的最早的转录因子之一,是表达与Te相关基因的表达所必需的。在小鼠中的功能敲除研究,通过特定于位点重组灭活TEAD4,已经表明,Tead4-Target的胚胎已损害了特定的CDX2和GATA3的发育和表达。CDX2和GATA3在TEAD4下游的平行途径中起作用,以诱导成功的区分。下游CDX2表达的丧失,损害了TE分化和随后的胚泡形成,并导致内部细胞质量(ICM)基因的异位表达,包括POU 5类同源物ox 1(POU5F1)(POU5F1)和SRY-BOX转录因子(SOX2)。CDX2是小鼠中更有效的TE命运调节剂,它会诱导更严重的表型。尚未研究Tead4及其下游效应子在人类植入前胚胎发育中的作用。
数十年来,KRAS突变肺腺癌(LUAD)一直对基于个性化医学的治疗策略难治性,这是因为设计抑制剂的复杂性可以选择性地靶向具有可接受毒性的KRAS和下游靶标。选择性KRAS G12C抑制剂的最新发展是自鉴定为人类基因以来40年的激烈研究工作后的地标。在这里,我们讨论了负责快速发展对这些抑制剂的耐药性的机制,以及克服这一限制的潜在策略。还审查了旨在通过靶向上游激活剂或下游效应子来抑制KRAS致癌信号传导的其他治疗策略。最后,我们讨论了靶向有丝分裂原激活的蛋白激酶(MAPK)途径的效果,这是基于MEK和ERK抑制剂在临床试验中的失败,以及由于其与MAPK无关的活性而导致的RAF1作为潜在靶标的近期鉴定。这些新的发展共同开放了新的途径,可以有效地治疗Kras突变体Luad。