肝细胞癌(HCC)的年发病率继续升高。在过去的二十年中,当满足可行和严格的选择标准时,肝移植(LT)已成为对HCC的首选治疗方法。随着与HCC相关的LT的增加,由于下降技术和移植选择标准的扩展而复合,预计移植后HCC复发的数量也会平行增加。此外,在免疫压迫的移植宿主的背景下,复发可能会积极地行事,更具挑战性地管理,导致进展不佳。尽管如此,目前仍存在有关HCC的转移后癌症监测和复发管理的共识或最佳实践指南。缺乏足够的人口规模和高级证据的研究,并且在移植物和肝外复发中的全身和局部区域疗法的作用仍在争论中。本综述旨在总结有关移植后HCC监视和复发管理的现有文献。它突出了早期肿瘤检测的价值,重新评估免疫抑制方案,并分期以区分分离性的复发与肝内或肝外寡素的重复。这最终指导决策并最大化治疗效果。根据当前可用的局部区域和全身疗法提供了针对复发类型的治疗建议。临床甲醇2021年10月5日。[EPUB在印刷前]关键字:肝细胞癌;肝移植;复发;免疫抑制;疾病管理;免疫抑制
最近对量子网络(QNN)以及它们在不同领域的应用都有很大的兴趣。QNNS的当前解决方案对它们的可伸缩性提出了显着的挑剔,从而确保了量子力学的后期满足,并且可以在物理上实现净作品。QNNS的指数状态空间对训练过程的可扩展性构成了挑战。禁止原理禁止制作多个训练样本的副本,并且测量值假设导致了非确定性损失函数。因此,尚不清楚依赖于每个样本的几个副本进行训练QNN的几个副本的现有方法的物理可靠性和效率尚不清楚。本文提出了一个QNN的新模型,依赖于量子量度感知器(QPS)传递功能的带限制的傅立叶范围来设计可扩展的训练程序。通过随机量子随机差下降技术增强了这种训练过程,从而消除了对样品复制的需求。我们表明,即使在由于量子测量引起的非确定性的情况下,这种训练过程即使在存在非确定性的情况下也会收敛到真正的最小值。我们的解决方案具有许多重要的好处:(i)使用具有集中傅立叶功率谱的QPS,我们表明可以使QNN的训练程序可扩展; (ii)它消除了重新采样的需求,从而与无禁止的规则保持一致; (iii)增强了整体培训过程的数据效率,因为每个数据样本都是每个时期的一次。我们为我们的模型和方法的可伸缩性,准确性和数据效率提供了详细的理论基础。我们还通过一系列数值实验来验证方法的实用性。
近年来,人们对量子神经网络 (QNN) 及其在不同领域的应用产生了浓厚的兴趣。当前的 QNN 解决方案在其可扩展性方面提出了重大挑战,确保满足量子力学的假设并且网络在物理上可实现。QNN 的指数状态空间对训练程序的可扩展性提出了挑战。不可克隆原则禁止制作训练样本的多个副本,而测量假设会导致非确定性损失函数。因此,依赖于对每个样本的多个副本进行重复测量来训练 QNN 的现有方法的物理可实现性和效率尚不清楚。本文提出了一种新的 QNN 模型,该模型依赖于量子感知器 (QP) 传递函数的带限傅里叶展开来设计可扩展的训练程序。该训练程序通过随机量子随机梯度下降技术得到增强,从而无需复制样本。我们表明,即使存在由于量子测量而产生的不确定性,该训练程序也会收敛到期望的真实最小值。我们的解决方案有许多重要的好处:(i)使用具有集中傅里叶功率谱的 QP,我们表明 QNN 的训练程序可以可扩展;(ii)它消除了重新采样的需要,从而与无克隆规则保持一致;(iii)由于每个数据样本每个时期处理一次,因此提高了整个训练过程的数据效率。我们为我们的模型和方法的可扩展性、准确性和数据效率提供了详细的理论基础。我们还通过一系列数值实验验证了我们方法的实用性。