Loading...
机构名称:
¥ 1.0

近年来,人们对量子神经网络 (QNN) 及其在不同领域的应用产生了浓厚的兴趣。当前的 QNN 解决方案在其可扩展性方面提出了重大挑战,确保满足量子力学的假设并且网络在物理上可实现。QNN 的指数状态空间对训练程序的可扩展性提出了挑战。不可克隆原则禁止制作训练样本的多个副本,而测量假设会导致非确定性损失函数。因此,依赖于对每个样本的多个副本进行重复测量来训练 QNN 的现有方法的物理可实现性和效率尚不清楚。本文提出了一种新的 QNN 模型,该模型依赖于量子感知器 (QP) 传递函数的带限傅里叶展开来设计可扩展的训练程序。该训练程序通过随机量子随机梯度下降技术得到增强,从而无需复制样本。我们表明,即使存在由于量子测量而产生的不确定性,该训练程序也会收敛到期望的真实最小值。我们的解决方案有许多重要的好处:(i)使用具有集中傅里叶功率谱的 QP,我们表明 QNN 的训练程序可以可扩展;(ii)它消除了重新采样的需要,从而与无克隆规则保持一致;(iii)由于每个数据样本每个时期处理一次,因此提高了整个训练过程的数据效率。我们为我们的模型和方法的可扩展性、准确性和数据效率提供了详细的理论基础。我们还通过一系列数值实验验证了我们方法的实用性。

迈向物理可实现的量子神经网络

迈向物理可实现的量子神经网络PDF文件第1页

迈向物理可实现的量子神经网络PDF文件第2页

迈向物理可实现的量子神经网络PDF文件第3页

迈向物理可实现的量子神经网络PDF文件第4页

迈向物理可实现的量子神经网络PDF文件第5页

相关文件推荐