3.2.2. 大型语言模型 (LLM) 可能会生成不正确的事实和引文。代码生成模型往往会产生不准确的输出。图像生成模型可能会产生有偏见或令人反感的产品。您将对您提交的任何内容负责,无论它最初来自您还是基础模型。
免责声明:提供此文件以帮助您比较这两个账单。有时这种自动比较不会完全准确。因此,您需要阅读实际的账单。本自动生成的文档可能包含不准确的不准确性:比较程序的限制;不良输入数据;或其他原因。
免责声明:提供此文件以帮助您比较这两个账单。有时这种自动比较不会完全准确。因此,您需要阅读实际的账单。本自动生成的文档可能包含不准确的不准确性:比较程序的限制;不良输入数据;或其他原因。
免责声明:提供此文件以帮助您比较这两个账单。有时这种自动比较不会完全准确。因此,您需要阅读实际的账单。本自动生成的文档可能包含不准确的不准确性:比较程序的限制;不良输入数据;或其他原因。
免责声明:提供此文件以帮助您比较这两个账单。有时这种自动比较不会完全准确。因此,您需要阅读实际的账单。本自动生成的文档可能包含不准确的不准确性:比较程序的限制;不良输入数据;或其他原因。
免责声明:提供此文件以帮助您比较这两个账单。有时这种自动比较不会完全准确。因此,您需要阅读实际的账单。本自动生成的文档可能包含不准确的不准确性:比较程序的限制;不良输入数据;或其他原因。
免责声明:提供此文件以帮助您比较这两个账单。有时这种自动比较不会完全准确。因此,您需要阅读实际的账单。本自动生成的文档可能包含不准确的不准确性:比较程序的限制;不良输入数据;或其他原因。
10实施本标准或拟议标准的某些要素可能受第三方专利权的约束,包括临时专利权(此处“专利权”)。dmtf不向标准用户陈述有关此类权利的存在,也不承担承认,披露或确定任何或所有此类第三方专利权所有者或索赔人,也不对任何不完整或不准确的认同或不准确的认同或披露此类权利,所有者,所有者或索赔人。dmtf不应以任何法律理论,无论采用任何方面的任何方面或任何情况,都无法承认,披露或确定任何此类第三方专利权,或者对于该方在其产品,协议或测试程序中对标准或其成立的依赖。dmtf对任何执行此类标准的一方不承担任何责任,无论是否可以预见,对任何专利所有人或索赔人都不承担任何责任,并且如果出版后撤回或修改了标准的成本或损失,并且在出版后撤回或修改了损失,并且由任何人予以实施的任何一方无害,以任何人的索赔代理和所有所有者的索赔。
随着 2024 年大选的临近,眼见已不再是事实。人工智能工具让任何人都可以轻而易举地在照片、视频和音频中做或说任何事情。如果不加以控制,人工智能可能会让不准确的信息传播得更快、更广泛,让选民更难区分什么是真实的,什么不是真实的。