这项技术可以小批量生产个性化部件 [2]。这些部件可以打印成各种复杂的形状,而后期加工很少 [3]。单个产品的成本大大降低,工艺生产率也提高了 [2,4]。在电弧增材制造 (WAAM) 中,电弧焊工艺用于制造部件 [5]。电弧加热金属丝,熔融金属沉积在基材上 [5,6]。热填充金属在基材上的沉积会导致基材温度升高。与剩余较冷区域相比,基材在热影响区域的热膨胀会导致其机械性能发生变化。这会导致基材内形成残余应力 [7],并导致基材变形和尺寸不稳定 [6]。过去,不同的作者描述了
结果:包括一些相关研究。结果表明,体育活动显着改善了ASD儿童的执行功能(抑制性控制,认知能力和工作记忆)的所有三个维度。认知灵活性和抑制性控制的改善都达到了中等效应的大小。然而,抑制控制的改善要比认知能力的改善要好,而工作记忆的改善未达到培养基水平。迷你篮球可有效改善抑制性控制和认知能力,但没有工作记忆。ping pong在认知的灵活性和工作记忆中更有效,但在抑制性控制方面较弱。固定自行车在所有三个维度上都没有效果。在其他干预措施中,学习自行车,动物辅助疗法和Exergaming的认知能力表现更好。Spark,Neiyang Gong和武术也有效地改善了抑制性控制。但是,火花和固定自行车在改善工作记忆方面并不重要。
航空航天工程师负责设计、分析、建模、模拟和测试飞机、航天器、卫星、导弹和火箭。航空航天技术还扩展到在气体或液体中移动物体的许多其他应用。例如高尔夫球、高速列车、水翼船或风中的高楼大厦。作为一名航空航天工程师,您可能会参与猎户座太空任务,该计划计划在 2020 年之前将宇航员送上火星。或者,您可能会参与开发新一代太空望远镜,这是我们一些最重要的宇宙学发现的来源。但外太空只是航空航天工程师可以探索的众多领域之一。您可能会为我们的航空公司开发商用客机、军用喷气式飞机或直升机。更实际的是,您可以设计最新的地面和海上交通工具,包括高速列车、赛车或探索海底生命的深海船只。
您的隐私选项 我们和选定的广告合作伙伴会收集您的部分数据,以便通过个性化内容和广告为您提供更好的体验。您可以在我们的隐私声明中了解更多信息。
从消费电子到电动汽车,电池在各个领域的重要性越来越重要,强调了精确电池模型的关键必要性。本评论描述了电池模型的四个主要类别:经验,等效电路,数据驱动和基于物理的模型。像Nernst和Shepherd模型这样的经验模型提供了简单性,但缺乏精确度。等效电路模型在简单性和准确性之间取得了平衡,尽管有验证约束。数据驱动的方法利用机器学习来准确预测电池性能,但需要高质量的数据集。基于物理学的模型集成了基本的电化学过程,以详细理解,尽管计算复杂性增强。比较分析以锂离子电池为重点,揭示了计算效率和准确性之间的权衡。具有电解质动力学的单个粒子模型及其扩展单粒子模型作为有效的选项出现,带有电解质动力学的单个粒子模型显示出有希望的精度,类似于单个粒子模型。此外,在不同的电池化学分子上进行比较,公布了不同水平的建模精度。本文比较了跨化学的不同电化学建模技术和辨别最佳方法。是电池建模技术之一的电化学模型,已在本研究中进行了详细研究和研究,并为文献提供了有关化学模型如何与哪种电化学模型一起使用的文献。此外,这项研究在Pybamm中使用优化技术有助于现有的铁磷酸锂化学建模。综合提供了对各种建模方法的见解及其对电池研究和开发的影响,从而指导未来的调查,以针对特定应用的更量身定制的建模策略。
寻常痤疮是一种常见的炎症性皮肤病,全球约有 6.5 亿人患有此病 ( 1 , 2 )。痤疮会因其生理和心理社会病变而对患者的生活质量产生负面影响 ( 3 )。微粉刺和粉刺是原发性痤疮病变,由毛囊皮脂腺单位 (PSU) 漏斗部囊性形成引起 ( 4 ),大多数炎症性病变源自粉刺,包括丘疹、脓疱、结节和囊肿 ( 5 )。寻常痤疮从微粉刺到炎症性病变的进展并不总是呈线性关系 ( 6 , 7 )。痤疮的病因复杂且多因素,主要包括皮脂溢和皮脂成分改变、毛囊角化过度、微生物群异常、炎症和免疫反应 ( 8 )。这些因素共同损害 PSU,导致正常毛囊管转变为微粉刺,并进一步发展为炎症性病变 ( 9 )。目前普遍认为,炎症在痤疮发病机制的早期就开始了 ( 10 )。
eothenomys miletus是一种居住在亨格山区(HDR)的地方性物种,并作为瘟疫和hantaviruses的主要宿主之一。虽然已经对大肠杆菌的生理特征进行了广泛的研究,但分子方面,尤其是Miletus的迁移方向,尚不清楚。在本研究中,我们利用基因组数据来研究四个人群的迁移方向:Ailaoshan(ALS),Jiangchuan(JC),Lijiang(LJ)和Deqin(DQ),它们分布在HDR内部到北部。我们的结果表明,ALS种群位于系统发育树的底部,混合物分析表明,ALS人群与JC和DQ种群更紧密相关。整合了分子遗传结构,米氏大肠杆菌的化石记录以及我们的研究结果,我们推断了米尔塔斯大肠杆菌的迁移方向可能是从南到北的,这表明DQ和JC种群可能起源于ALS的迁移。但是,LJ人群的迁移模式和起源需要进一步研究和讨论。此外,我们专注于识别不同人群中选择和局部适应的基因组信号。我们确定了与DQ:SIX1、64和SOX2中嗅觉位置相关的三个选择基因。我们假设这些基因可能与DQ人群对该地区微气候的适应有关。总而言之,本研究是第一个采用基因组学来探索Miletus的迁移方向,这对于未来对Eothenomys起源的研究至关重要。
结果:包括12,990例随机分配给10种药理学干预措施和安慰剂的患者的25例RCT。与安慰剂相比,关于生殖器感染(GI)(GI),所有SGLT-2I,除Ertugli lopli ozin和ipragli lof ozin外,与GI的风险更高有关。empagli -lof ozin 10mg/d(88.2%,优势比[OR] 7.90,95%可信间隔[CRI] 3.39至22.08)可能是最危险的基于概率排名,300mg/d(70.8%或5.33,95%CRI 2.25至13.83)。此外,与尿路感染(UTI或2.11,95%CRI 1.20至3.79,87.2%),肾脏损伤(80.7%)和鼻咽炎(81.6%)相比,与尿路感染(UTI或2.11,95%CRI 1.20至3.79,87.2%)相比,Dapagli -lof ozin 10mg/d排名最高。没有观察到
方法是根据他们的意愿和可用性选择了14岁及以上的五十个人自愿参加了这项研究。一项李克特级调查评估了学习新技能对认知功能和行为的感知影响,并进行了预研究的调查,以收集人口统计数据和当前的认知能力。主要调查包括有关参与,解决问题,记忆,重点,创造力,信心和持续学习的问题,并以2、4和7周的特定时间间隔进行管理。为了确保数据的准确性和可靠性,调查的设计经过了系统的验证和预测试过程。获得了知情同意书,并通过Google表格匿名进行了调查,并牢固地存储了响应。调查响应被安全存储以确保机密性,数据分析的重点是描述性统计和相关性,以探索学习新技能和认知功能的变化(包括大脑连接性)之间的关系。调查开发的初始阶段涉及与研究假设相关的关键结构:学习新技能对认知能力的记忆功能的影响以及诸如记忆力,问题,关注和问题的影响。基于现有文献和先前关于技能获取和认知发展的研究,制定了一组8个核心问题。这些问题分为主题类别,这些类别解决了认知能力,学习参与和技能的自我评估。此同行审查过程允许对问题的清晰度,相关性和全面性进行反馈。例如,调查要求参与者对他们当前的认知能力的信心,从事挑战认知技能的活动的频率以及在参与新技能后的注意力和解决问题能力方面的提高。为了确保调查的内容有效性,认知心理学和教育评估方面的主题专家对初始问题进行了审查。基于此反馈,进行了少量修订以改善问题措辞,并确保项目与研究的目标直接相关。在调查进行全面执行之前,进行了一个较小的10个人组进行预测试,人口特征与
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
