多孔电极内反应电流分布不均匀是电池充电/放电过程中普遍存在的现象,并且常常控制着电池的倍率性能。多孔电极中的反应不均匀性通常归因于电解质和/或固体电极相内质量传输的动力学限制。然而,在这项工作中,我们发现它也受到电极材料固有热力学行为的强烈影响,特别是平衡电位对充电状态的依赖性:当平衡电位曲线的斜率降低时,电极反应变得越来越不均匀。我们采用数值模拟和等效电路模型来阐明这种相关性,并表明反应不均匀性的程度和由此产生的放电容量可以通过无量纲反应均匀度数来预测。对于平衡电位对电荷状态不敏感且表现出显著反应不均匀性的电极材料,我们展示了几种在空间上均化多孔电极内反应电流的方法,包括匹配电子和离子电阻、引入分级电子电导率和降低表面反应动力学。© 2020 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款分发(CC BY,http://creativecommons.org/licenses/by/4.0/),允许在任何媒体中不受限制地重复使用作品,前提是对原始作品进行适当的引用。[DOI:10.1149/1945-7111/abb383]
摘要:调整宽带隙 β - Ga 2 O 3 的光学和电子特性对于充分利用该材料在电子、光学和光电子领域现有和新兴技术应用中的潜力至关重要。在本研究中,我们报告了 Ti 掺杂剂不溶性驱动的化学不均匀性对 Ga 2 O 3 多晶化合物的结构、形态、化学键合、电子结构和带隙红移特性的影响。采用传统的高温固相反应路线在可变的煅烧温度(1050 − 1250 ° C)下合成了 Ga 2 − 2 x Ti x O 3(GTO;0 ≤ x ≤ 0.20)化合物,烧结温度为 1350 ° C。GTO 样品的 X 射线衍射分析表明,仅在非常低的 Ti 掺杂浓度(<5 at. %)下才会形成单相化合物,而较高的 Ti 掺杂会导致形成复合材料,其中含有大量未溶解的 TiO 2 金红石相。然而,在烧结样品中,未溶解的金红石相的一部分转化为单斜 TiO 2。 Rietveld 对本征 Ga 2 O 3 和单相 Ti 掺杂化合物(x = 0.05)进行细化,证实样品在具有 C 2/m 空间群的单斜对称性中稳定存在。样品的表面形貌表明,本征 Ga 2 O 3 呈现棒状形貌,而 Ti 掺杂化合物呈现球形形貌。此外,在具有异常晶粒生长的掺杂化合物中,与本征 Ga 2 O 3 相比,可以注意到晶格孪生引起的条纹。Ga 2p 的高分辨率 X 射线光电子能谱分析显示,由于相邻离子的电子云之间的相互作用,与金属 Ga 相比发生了正向偏移。由于 Coster − Kronig 效应,Ti 2p 1/2 光谱显示出异常增宽。采用混合密度泛函理论的第一性原理计算表明,Ti 优先取代八面体 Ga 位点,并在 Ga 2 O 3 中表现为深层施主。从光吸收光谱可以看出,光学带隙发生了红移。Ga 2 O 3 带隙内的吸收归因于未溶解的 TiO 2 的夹杂,因为 TiO 2 在 Ga 2 O 3 带隙内具有 I 型排列。此外,还研究了 GTO 化合物的电催化行为。从电催化研究中可以明显看出,与本征 Ga 2 O 3 相比,掺杂化合物表现出明显的电催化活性。
溅射沉积如图1所示,溅射沉积过程是通过用离子轰击所需沉积材料的目标来完成的。事件离子在目标内引发碰撞级联。当级联反应以足够的能量克服表面结合能到达目标表面时,可以弹出原子。溅射室的示意图如图2所示。电场将传入的气体电离(通常是氩气)。阳性离子轰击靶(阴极)和溅射原子在底物上(阳极)。可以加热底物以改善键合。溅射产量(即从每个入射离子射出的原子的平均原子数)取决于几个参数,包括相对于表面的离子入射角,离子的能量,离子和靶原子的相对质量以及靶原子的表面结合能。虽然影响溅射的相对较大的数字参数使其成为一个复杂的过程,但具有如此多的控制参数可以对所得膜的生长和微观结构进行很大程度的控制。各向异性的晶体靶材料,晶格相对于靶表面的方向影响溅射产量。在多晶溅射目标中,以不同速率的不同方向溅射的晶粒。这可能会影响沉积薄膜的均匀性。一个关键控制参数是目标材料中纹理的均匀性。图3显示了铜单晶溅射产量的各向异性(Magnuson&Carlston,1963年)。所有面部中心材料的一般趋势均具有:S(111)> s(100)> s(110)。