本标准已获准供国防部所有部门和机构使用。 1. 范围 1.1 范围。本标准规定了准备技术数据包 (TDP) 的要求,TDP 由一个或多个 TDP 元素和相关的 TDP 数据管理产品组成(见 6.1)。 1.1.1 选择性应用。选择组成 TDP 的 TDP 级别、类型、元素和 TDP 数据管理产品必须基于采购活动对支持所记录产品的收购和生命周期支持策略所需的技术数据的需求。采购活动对技术数据的需求因项目而异。 1.1.2 定制实施。此处的所有要求均可定制。这些要求以及选择纳入 TDP 的特定 TDP 级别、类型和元素以及 TDP 数据管理产品的要求应由采购活动在发布招标之前进行定制。这包括数据项描述 (DID) 中规定的要求、政府或非政府标准以及对媒体和交付方式的要求。
2022 年 7 月 22 日 — 元数据文件应位于文件结构的根级别。术语元数据用于描述属性信息(即索引数据)、...
由 Taylor and Francis 出版。这是已获作者认可的手稿,其发行方式为:知识共享署名非商业许可证 (CC:BY:NC 4.0)。最终出版版本(记录版本)可在线获取,网址为 DOI:10.1080/07370652.2020.1762798。请参阅任何适用的出版商使用条款。
定向耦合器(DCS)在具有多功能应用(例如电源拆分,调制和波长施用)多路复用等多功能应用中起关键作用。然而,由于分散而引起的固有波长依赖性对使用DC构成了带宽的限制。尤其是50:50 DC仅在一个波长下实现此比率。这种意外的耦合变化显着降低了许多硅光子应用的性能。在寻求实现宽带50:50 DC时,已经探索了各种计划。值得注意的是,已经提出了基于模式进化的绝热DC,其中输入波导中的光在DC中的均匀或奇数模式在50:50分裂[1]中均具有均匀或奇数。绝热DC是固有的较长设备,可能会超过300 µm,并且经常表现出高度损失。另一种设计策略采用了非对称DC,利用不同宽度的波导来降低波长依赖性。尽管具有潜力,但这些设计对线宽变化高度敏感,并且制造不耐症[2]。实现宽带功能和制造公差在硅光子学中构成了重大挑战,这主要是由于纳米级维度和高指数对比度[3]。最近,弯曲的DC(不对称DC的子集)已成为可行的解决方案[4]。他们提供宽带耦合,这是一个相对紧凑的足迹,同时保持较高的制造耐受性。通过弯曲波导的不对称引入消除了对不同波导宽度的需求,因此解决了在具有不对称波导宽度的DC中观察到的制造灵敏度。由于不对称性,不再是不可能的,与在对称的直接直流中耦合相反,这会导致非单调耦合与波长,并且可以设计为实现最大值
下一代 MKS π MFC(质量流量控制器)包括功能和性能方面的技术改进,可帮助半导体和高纯度薄膜应用中的用户提高工具吞吐量并降低整体系统成本。通过先进的数字算法提供对上游和下游压力扰动不敏感的实时精确流量控制。通过实现对工艺气体流量的实时控制,与传统的基于 PID 的数字 MFC 相比,其准确性和重复性得到了显着提高,从而实现了更好的腔室匹配。
物联网(IoT)的可穿戴电子设备促使人们兴趣优化可拉伸基板,电极和传感材料。具体来说,可穿戴气体传感器对于对危险化学物质的实时监测很有价值。对于可穿戴气体传感器,需要在机械变形下进行稳定的操作。在这里,我们介绍了用二氧化钛(TIO 2)功能化的碳纳米管(CNT)装饰的菌株不敏感的基里加米结构的气体传感器,以NO 2传感。使用Kirigami形的底物用于确保我的稳定性在拉伸时。开发的设备在80%的应变下仅显示1.3%的基本电阻变化。此外,分析了各种应变水平的电热性能的影响,以帮助对该设备的性能的明确说明。与裸露的CNT传感器相比,CNT-TIO 2复合诱导的P-N杂音变化,将测量灵敏度提高了约250%。此外,由于在紫外线暴露下TIO 2的光催化作用增强,传感器的脱附速率更快10倍。值得注意的是,Kirigami结构的气体传感器即使在80%以下的应变以下也保持稳定且重复的传感操作,这足以用于各种可穿戴应用。
众所周知,光混合器 [1] 是光通信相干接收器中的关键组件。它可以采用多种技术构建,包括光纤、硅光子学和偏振光学 [2-5]。扩展可用带宽以匹配光电探测器的整个范围可以实现新的应用,例如相干光谱 [6]、光纤传感 [7]、光检测和测距 (LiDAR) [8],以及生物医学传感和成像 [9],例如光学相干断层扫描 (OCT) [10]。在迄今为止报道的制备的混合器中,最大的带宽为 120 nm,约为 1550 nm,这是因为如果不进行主动调整就难以获得精确的 90° 相移 [11-13]。多平面光转换 (MPLC) 是一种多输入、多输出光束重塑技术,由一系列由自由空间传播分隔的相位掩模组成 [14, 15],因此可以产生具有 2 个输入和 4 个输出的光混合器。图 1 显示了由 14 个光滑相位掩模板和一个金镜组成的多反射腔中形成的光学混合器的示意图。输入由微透镜准直的单模光纤阵列馈送,输出是四束高斯光束,这些光束与类似的光纤准直器阵列模式匹配,或者可以在自由空间光电探测器上检测到。
1 天津市成像与传感微电子技术重点实验室,天津大学微电子学院,天津 300072 2 天津大学电气与信息工程学院,天津 300072 3 东南大学信息科学与工程学院,毫米波国家重点实验室,南京 210096 4 西安电子科技大学电子工程学院,高速电路设计与电磁兼容教育部重点实验室,西安 710071 5 华为技术有限公司,上海 518129 6 伦敦大学学院电子与电气工程系,伦敦 WC1E7JE,英国 7 浙江大学信息与电子工程学院,浙江省微纳电子器件与智能系统重点实验室,杭州 310027
评估泰国生物多样性多样性(生态系统,遗传学,雕像,生计),后部和不敏感动物,3组(珊瑚alus and corus and Crustheian)
对信号路径两端之间的接地连接质量不敏感 即使信道衰减很大,数据链路仍能保持功能性 与单端信号路径相比,支持非常高的数据速率