众所周知,光混合器 [1] 是光通信相干接收器中的关键组件。它可以采用多种技术构建,包括光纤、硅光子学和偏振光学 [2-5]。扩展可用带宽以匹配光电探测器的整个范围可以实现新的应用,例如相干光谱 [6]、光纤传感 [7]、光检测和测距 (LiDAR) [8],以及生物医学传感和成像 [9],例如光学相干断层扫描 (OCT) [10]。在迄今为止报道的制备的混合器中,最大的带宽为 120 nm,约为 1550 nm,这是因为如果不进行主动调整就难以获得精确的 90° 相移 [11-13]。多平面光转换 (MPLC) 是一种多输入、多输出光束重塑技术,由一系列由自由空间传播分隔的相位掩模组成 [14, 15],因此可以产生具有 2 个输入和 4 个输出的光混合器。图 1 显示了由 14 个光滑相位掩模板和一个金镜组成的多反射腔中形成的光学混合器的示意图。输入由微透镜准直的单模光纤阵列馈送,输出是四束高斯光束,这些光束与类似的光纤准直器阵列模式匹配,或者可以在自由空间光电探测器上检测到。
囚禁离子具有较长的相干时间、固有的均匀性和较高的门保真度,是量子模拟和通用量子计算的一个有前途的平台[1-8]。实现高保真度多量子比特纠缠门的最常用方法依赖于将内部量子比特“自旋”态与集体运动自由度耦合[1,2,9]。几何相位门——通过运动相空间中封闭的、自旋相关的轨迹产生纠缠——被广泛使用,因为它们对离子温度(在 Lamb-Dicke 极限下)具有一级不敏感性[10-12]。几何相位门利用激光束产生所需的自旋运动耦合,已被用于产生保真度为 ∼ 0 的贝尔态。 999 [7,8],主要误差来自非共振光子散射[13]。其他无激光方案利用静态[14-19]、近量子比特频率[20-25]或近运动频率[20,26-28]磁场梯度引起自旋运动耦合。虽然无激光方案消除了光子散射误差,并且不需要稳定的高功率激光器,但由于其门持续时间通常较长,因此更容易受到其他噪声源的影响。由于场幅度波动导致的量子比特频率偏移或错误校准是使用微波场梯度实现的无激光门的主要误差源[19,21]。最近的研究表明,通过精心的陷阱设计可以被动地减少其中一些偏移[24]。也可以通过添加控制场来执行动态解耦,从而主动减少它们[18,29-32];迄今为止,最好的
2022 年 7 月 22 日 — 元数据文件应位于文件结构的根级别。术语元数据用于描述属性信息(即索引数据)、...
本标准已获准供国防部所有部门和机构使用。 1. 范围 1.1 范围。本标准规定了准备技术数据包 (TDP) 的要求,TDP 由一个或多个 TDP 元素和相关的 TDP 数据管理产品组成(见 6.1)。 1.1.1 选择性应用。选择组成 TDP 的 TDP 级别、类型、元素和 TDP 数据管理产品必须基于采购活动对支持所记录产品的收购和生命周期支持策略所需的技术数据的需求。采购活动对技术数据的需求因项目而异。 1.1.2 定制实施。此处的所有要求均可定制。这些要求以及选择纳入 TDP 的特定 TDP 级别、类型和元素以及 TDP 数据管理产品的要求应由采购活动在发布招标之前进行定制。这包括数据项描述 (DID) 中规定的要求、政府或非政府标准以及对媒体和交付方式的要求。
下一代 MKS π MFC(质量流量控制器)包括功能和性能方面的技术改进,可帮助半导体和高纯度薄膜应用中的用户提高工具吞吐量并降低整体系统成本。通过先进的数字算法提供对上游和下游压力扰动不敏感的实时精确流量控制。通过实现对工艺气体流量的实时控制,与传统的基于 PID 的数字 MFC 相比,其准确性和重复性得到了显着提高,从而实现了更好的腔室匹配。