肿瘤球体是无血管肿瘤生长的体外实验模型。与传统的二维培养物相比,肿瘤球体更紧密地模仿无血管肿瘤微环境,其中养分可用性的空间diûerence强烈影响生长。我们表明,使用明显的Diûer数量的细胞生长到相似的限制大小,这表明血管肿瘤具有极限结构。与肿瘤球体经典数学模型的未经测试的预测一致。我们开发了一种新型的数学和统计框架,以研究从用荧光细胞周期指示器转导的细胞中播种的肿瘤球体的结构,使我们能够区分被捕的和循环细胞并识别被捕的区域。我们的分析表明,瞬态球体结构与初始球体大小无关,并且极限结构可以独立于播种密度。标准实验协议比较球体大小与时间的函数;但是,我们的分析表明,将球体结构与总体大小的函数进行比较会产生对球体大小的变异性相对不敏感的结果。我们的实验观察是使用两种黑色素瘤细胞系进行的,但是我们的建模框架适用于各种球体培养条件和细胞系。
虚假的永恒通胀可以描述为在弦真空网络上随机步行。在本文中,我们表明该问题可以自然地映射到定向渗透问题。映射依赖于两个通用且良好的近似值的过渡速率:(1)向下近似忽略“向上”过渡的近似值,因为这些近似通常会被指数置于指数抑制; (2)主要的衰减通道近似,该近似值是基于隧道率指数交错的事实。缺乏对字符串景观的详细知识,我们将真空网络建模为具有任意度分布的随机图,包括Erdös-r´enyi和无尺度图。作为一种补充方法,我们还将景观区域的区域建模为常规格子,特别是贝特晶格。我们发现,在我们以前的工作中提出的均匀概率有利于在定向渗透相变的景观区域。这增加了为物理可观察物的普遍统计分布的诱人前景,其特征是对基础景观细节不敏感的关键指数。我们用宇宙常数说明了这一点,并表明所产生的分布峰是小型正真空能的幂律,其关键指数由随机图普遍性类别唯一决定。
从技术上优化金属注射成型钛合金 (Ti-MIM) 的加工清洁度在经济上不可行。这个问题在材料加工领域很常见。在寻找替代方法的过程中,这项工作试图在耐受非常高的杂质水平的同时实现卓越的高周疲劳 (HCF) 性能。该概念源于 b 类 Ti 合金对氧溶质的较大耐受性以及在单调载荷下减轻碳化物夹杂物的有害影响的可行性。在本文中,用于疲劳关键应用的 MIM b Ti-Nb-Zr 生物材料是特意以非常高的 O 水平和正常/非常高的 C 水平生产的。无论加工清洁度如何,抗杂质的 Ti 生物材料都表现出超过 600 MPa 的优异 HCF 耐久极限,明显高于在严格限制杂质水平的情况下生产的 a - b Ti 参考合金。这种优异的疲劳性能,同时耐受一定量的杂质,源于对杂质不敏感的“弱”微观结构特征和 Ti 基质对疲劳小裂纹的增强抵抗力。此外,在某些情况下,可能出现由两种相互竞争的裂纹起始机制引发的条件疲劳二元性,起始于微尺度孔隙 a - 片状体和大孔隙 TiC 夹杂物。本合金工艺开发的成功可能会大大放宽对活性金属的加工要求。� 2021
假单胞菌具有代谢灵活性,可以在不同的植物宿主上茁壮成长。然而,宿主滥交所需的代谢适应性尚不清楚。在这里,我们通过采用 RNAseq 并比较东湖假单胞菌 P482 对两种植物宿主(番茄和玉米)根系分泌物的转录组反应来弥补这一知识空白。我们的主要目标是找出这两种反应之间的差异和共同点。仅由番茄分泌物上调的途径包括一氧化氮解毒、铁硫簇的修复、通过对氰化物不敏感的细胞色素 bd 进行呼吸以及氨基酸和/或脂肪酸的分解代谢。前两个表明测试植物的分泌物中存在 NO 供体。玉米特异性地诱导了 MexE RND 型外排泵的活性和铜耐受性。与运动相关的基因由玉米诱导,但被番茄抑制。对渗出液的共同反应似乎受到来自植物的化合物和来自其生长环境的化合物的影响:砷抗性和细菌铁蛋白合成上调,而硫同化、柠檬酸铁和/或其他铁载体的感知、血红素获取和极性氨基酸的运输下调。我们的研究结果为探索植物相关微生物的宿主适应机制提供了方向。
磁转运(电导对外部磁场的响应)是揭示外来现象背后基本概念的重要工具,并在实现播种机应用方面起着关键作用。磁转运通常对磁场方向敏感。相比之下,很少见到电子传输的效果和各向同性调制,这在诸如全向感应等技术应用中很有用,尤其是对于原始晶体而言。这里提出了一种策略,以实现对电子传导对电子传导的极强调制,而磁场独立于场方向。GDPS是一种具有电阻率各向异性的分层抗铁磁半导体,它支持具有矛盾的各向同性巨大的巨型磁势敏感对磁性方向不敏感的场驱动的绝缘体到金属转变。这种各向同性磁阻起源于GD 3 +基于GD 3 +的半纤维f-Electron系统的接近零自旋 - 轨道耦合的组合效应以及GD原子中强的现场F - D交换耦合。这些结果不仅为具有非凡的磁转运提供了一种新型的材料系统,可为基于抗铁磁铁的超快和有效的旋转器设备提供缺失的块,而且还展示了设计具有高级功能的所需运输特性的磁性材料的关键成分。
为了比较不同尺寸系统中的闪光,应该使用密集型数量,即对系统体积不敏感的数量。通过测量分布的累积κi分裂(最高第四阶)来构建此类数量,其中i是累积的。在第二,第三和第四阶累积量密集量定义为:κ2 /κ1,κ3 /κ2和κ4 /κ2。图1显示了在150 /158 A GEV / c时净电荷的第三和第四阶累积比的系统尺寸依赖性。测量的数据与EPOS 1.99模型[4,5]预测一致。对相同数量的系统尺寸依赖性的更详细检查,用于负电荷的HADRON(图2)显示非常不同的系统尺寸依赖性。均未通过EPOS 1.99模型再现了测得的H +和H-。这种分歧表明我们不完全理解如何诱发爆发的基础物理学。因此,需要更详细的研究。在搜索CP时,可能的工具是质子插入性,该工具应遵循CP附近的幂律闪光。可以通过研究具有细胞大小的2 ND阶乘力矩f 2(m)的缩放行为,或等效地,在(p x,p y)中的质子中的细胞数量(参见参考文献。[6,7,8])。对于实验数据,必须通过混合事件减去非关键背景。减法后,第二个阶乘矩δf2(m)应根据M >> 1的幂律缩放,并导致关键
为了比较不同尺寸系统中的闪光,应该使用密集型数量,即对系统体积不敏感的数量。通过测量分布的累积κi分裂(最高第四阶)来构建此类数量,其中i是累积的。在第二,第三和第四阶累积量密集量定义为:κ2 /κ1,κ3 /κ2和κ4 /κ2。图1显示了在150 /158 A GEV / c时净电荷的第三和第四阶累积比的系统尺寸依赖性。测量的数据与EPOS 1.99模型[4,5]预测一致。对相同数量的系统尺寸依赖性的更详细检查,用于负电荷的HADRON(图2)显示非常不同的系统尺寸依赖性。均未通过EPOS 1.99模型再现了测得的H +和H-。这种分歧表明我们不完全理解如何诱发爆发的基础物理学。因此,需要更详细的研究。在搜索CP时,可能的工具是质子插入性,该工具应遵循CP附近的幂律闪光。可以通过研究具有细胞大小的2 ND阶乘力矩f 2(m)的缩放行为,或等效地,在(p x,p y)中的质子中的细胞数量(参见参考文献。[6,7,8])。对于实验数据,必须通过混合事件减去非关键背景。减法后,第二个阶乘矩δf2(m)应根据M >> 1的幂律缩放,并导致关键
摘要:水稻SLR1基因编码DELLA蛋白(具有DELLA氨基酸基序的蛋白质),其功能丧失突变通过抑制植物生长而使植物矮化。我们利用CRISPR/Cas9基因组编辑技术在水稻中靶向突变DELLA/TVHYNP结构域,生成具有半显性矮化表型的slr1-d突变体。在31株转基因植株中获得了16个遗传编辑株系。深度测序结果表明,突变体在SLR1基因的TVHYNP结构域靶位点有6种不同的突变类型。同源编辑植株在T1代中选择了没有通过分离转录的T-DNA(T-DNA)的个体。slr1-d7和slr1-d8植株导致对赤霉素(GA)不敏感的矮化表型,叶片皱缩,节间缩短。通过 RNA-seq 进行的全基因组基因表达分析表明,在编辑的突变体植物中,两个与 GA 相关的基因 GA 20 OX 2(赤霉素氧化酶)和 GA 3 OX 2 的表达水平有所增加,这表明 GA 20 OX 2 充当了 GA 12 信号的转换器。这些突变体植物需要改变 GA 反应,至少部分是由于植物激素信号系统过程的缺陷,并阻止了细胞伸长。新的突变体,即 slr1-d7 和 slr1-d8 系,是有价值的半显性矮化等位基因,具有利用 CRISPR / Cas9 系统在水稻中进行分子育种的潜在应用价值。
摘要SI是最重要的半导体材料之一,因为它一直是现代电子产品的支柱。但是,由于Si是间接带隙的结果,因此它不广泛用于发光源,因为Si是效率低下的发射极。硅底物上III-V纳米结构的直接外延生长是在硅平台上实现光子设备的最有前途的候选者之一。III-V在Si上的整体整合的主要问题是高密度螺纹位错的形成。TDS的传播将导致IIII-V外部活性区域中非辐射重组中心的高比例。为了停止TD传播,已经应用并在本演示文稿中使用了不同的外延策略,例如INGA(AL)作为应变层,GE缓冲层和图案化的底物。作为零维的材料,量子点(QD)具有三维量子约束,它会产生三角函数,例如状态的密度。因此,III-V QD激光器具有较低的阈值电流,温度不敏感的操作以及对螺纹位错的敏感性较小,这是在III-V型激光器中形成活性区域的理想候选者。自2011年以来,在UCL的寿命和高功率上,已提出并开发了在SI和GE底物上生长的1300-nm INM/GAAS QD激光器。在本演讲中,将汇总在SI平台上单体生长的INAS/GAAS QD激光的开发里程碑,并且还将预测未来几年的潜在趋势。
詹姆斯·韦伯太空望远镜 (JWST) 1 光学望远镜元件 (OTE) 是一个三镜消像散镜,由一个直径 6.5 米、分段式轻型主镜 (PM)、一个次镜和一个三镜组成。测量结构是一种轻型碳纤维复合结构(图 1)。轻型镜和结构技术开发以及望远镜是否满足其在轨性能要求需要最先进的干涉测量法,该干涉测量法具有高灵敏度、快速曝光时间和对振动不敏感的特点。瞬时相移干涉测量法满足了这些要求,其中像素化相位掩模允许同时捕获所有四个相移干涉图。这项技术是关键特性,使我们能够成功展示 JWST 望远镜轻型镜和大型轻型复合结构所需的技术就绪水平,制造主镜部分并验证其在低温下的性能,在环境测试之前和之后对完全组装的望远镜进行曲率中心测试,并在约翰逊航天中心在低温下对主镜进行相位调整。 4D Technology(现为亚利桑那州图森市 Onto Innovation 的子公司)为 JWST 项目建造了几台专用干涉仪(图 2),包括 PhaseCam、电子散斑干涉仪 (ESPI)、高速干涉仪 (HSI) 和多波干涉仪。