NCFS允许用户在尝试完成搜索时具有其他选项。高级搜索还包含条件操作员。条件运算符是“以”,“以”,“等于”,“不相等”,“包含”和“不包含”的“结束”,“结束”。当知道某些信息时,应使用“以”和“包含”的“结束”和“包含”,但完整的数据未知。如果已知确切的信息,请使用“平等”进行更快的响应。使用“不相等”和“不包含”操作员的唯一时间是多个字段搜索的一部分。添加字段允许用户搜索不包含在高级或基本搜索功能中的数据。添加字段允许用户使用任何给定数据的高级字段搜索。查询功能允许用户过滤针对特定列显示的行。用户可以输入特定列的文本以过滤(如果有)。
我们建议在纠缠交换协议中使用混合纠缠,作为对两个当事方高度有限的钟声国家进行分配的手段。这项工作中使用的混合纠缠被描述为离散变量(FOCK状态)和连续变量(CAT状态叠加)纠缠状态。我们在通过射影的真空 - 一个photon测量和通过平衡的同伴检测中检测到这些状态之前,在两个传播连续变量模式之间建模光子损失水平相等和不相等。我们研究了本协议中选择的测量方案的同性恋测量缺陷以及相关的成功概率。我们表明,我们的倾向交换方案具有弹性的光子损失水平,以及两种传播模式之间的平均不相等损失水平,并以其他混合纠缠方案的改善,以相干性状态叠加作为传播模式,这种损失弹性比其他混合纠缠方案有所改善。最后,我们得出结论,我们的协议适用于潜在的量子网络应用程序,当与合适的纠缠术方案一起使用时,需要两个节点在5-10 km的距离内共享纠缠。
我们研究了有限温度和边缘引起的对电荷和电流密度的影响,该电荷位于磁通量螺纹的2D锥形空间上。场算子在圆形边界上受约束,与圆锥形顶点,袋边界条件以及条件在术语前面的相反符号的条件约束。在二维空间中存在两个clifford代数的不相等表示,并为实现这些表示形式的两个字段提供了分析。圆形边界将锥形空间分为两部分,称为内部(I-)和外部(E-)区域。径向电流密度消失。对于一般的化学势情况,在两个区域中,电荷的预期值和方位角电流密度都明确分离。它们是磁通量的周期性功能和奇数功能,在磁通量和化学势的迹象的同时变化下。与文献中先前考虑的费米凝结物的重要差异是,当观测点趋于边界时,平均电荷和当前密度在极限中是有限的。在电子区域中,所有旋转模式都是规则的,总电荷和电流密度是磁通量的连续功能。在I区中,相应的期望值是在磁通量与通量量子之比的半数值下不连续的。这些不连续性来自I区中不规则模式的贡献。2D费米子模型,在奇偶校验和时间反向转换下(在没有磁场的情况下)结合了两个旋转磁场,意识到克利福德代数的不相等表示。讨论了这些模型中的总电荷和当前密度,以针对单独字段的边界条件的不同组合进行讨论。在2D Dirac模型描述的石墨锥中讨论了电子子系统的应用。
图S6。 (a)纳米颗粒尺寸浓度和(b)小提琴图,在1 d,15 d,15 d和30 d的PET颗粒和30 d的PET颗粒和5 mm AC中插入粒度分布的盒子图。 在A中,实线表示粒子浓度的平均值,阴影代表95%的机密间隔。 在B中,框图的顶部和底部边缘分别表示第一个四分位数和第三四分位数,内部线代表中位数,晶须表示数据中的上极端和下极端。 小提琴图的宽度说明了不同粒径的浓度。 在(b)中,由于不同条件下的样本量和方差不相等,对韦尔奇的t检验进行了成对比较(* p <0.05,** p <0.01,*** p <0.001)。 在每个孵育时间从一个生物复制中收集数据。图S6。(a)纳米颗粒尺寸浓度和(b)小提琴图,在1 d,15 d,15 d和30 d的PET颗粒和30 d的PET颗粒和5 mm AC中插入粒度分布的盒子图。在A中,实线表示粒子浓度的平均值,阴影代表95%的机密间隔。在B中,框图的顶部和底部边缘分别表示第一个四分位数和第三四分位数,内部线代表中位数,晶须表示数据中的上极端和下极端。小提琴图的宽度说明了不同粒径的浓度。在(b)中,由于不同条件下的样本量和方差不相等,对韦尔奇的t检验进行了成对比较(* p <0.05,** p <0.01,*** p <0.001)。在每个孵育时间从一个生物复制中收集数据。
为了提取投标的详细信息,使用了 tender_basic_details 和 tender_work_items 表。在 54000 份投标中,27570 份工作项目在 tender_basic_details 表中有相应的条目。合并表后,所有空列都将被删除。数据集中的产品类别由 143 个数字代码表示。然后使用主表 gep_product_category 将这些数字替换为其文本对应项。对于分类数据类型,使用骰子度量计算距离,其中当值不相等时距离被视为“1”,否则为“0”。对于连续文本数据类型,两个文本之间的距离与相似度成反比。相似度使用余弦相似度方法计算。对于连续实值,距离是两个值的绝对差除以
摘要。当大量数据的安全级别高于其任何单个组成记录时,就会发生数据聚合问题。传统的拆分数据和以“需要知道”为基础限制访问的方法,首先消除了收集数据的一大优势。本文介绍了一种新的加密原语——双盲比较,它允许两个合作用户(每个用户都有一个加密的秘密)确定这两个秘密的相等或不相等,即使两个用户都无法发现有关秘密的任何信息。本文还介绍了双线性群中的一个新问题,据推测这是一个难题。假设这个猜想,结果表明,如果没有其他用户的合作,两个用户都无法发现有关秘密是否相等的任何信息。然后我们看看如何使用双盲比较来缓解数据聚合问题。最后,本文总结了一些未来研究的可能性以及双盲比较的一些其他潜在用途。
抽象的元编码已经提供了对微生物多样性的前所未有的见解。在许多研究中,简短的DNA序列被纳入较低的Linnaean等级,排名组(例如属)是生物多样性分析的单位。这些分析假设Linnaean等级在生物学上具有有意义的,并且排名相同的组是可比的。我们为海洋浮游硅藻使用了一个元尺寸数据集来说明这种方法的限制。我们发现,20个最丰富的海洋浮游硅藻属的年龄从4到1.34亿年不等,这表明属的不相等,因为有些人比其他属的时间更多。然而,物种丰富度在很大程度上与属年龄无关,这表明属中物种丰富度的差异通过物种和灭绝率的差异来更好地解释。分类学分类通常不会反映系统发育,因此属级分析可以包括系统发育嵌套的属,进一步的基于等级的分析。这些结果强调了系统发育在理解微生物多样性模式中必不可少的作用。
当前的临床指南建议将不匹配修复(MMR)蛋白免疫组织化学(IHC)或分子微卫星不稳定性(MSI)测试作为免疫疗法的预测标记。大多数病理指南都将MMR蛋白IHC视为黄金标准测试,以鉴定具有MMR缺乏症的癌症,并仅建议在特殊情况下进行分子MSI测试或筛查林奇综合征。但是,文献中有一些数据表明两种测试类型可能不相等。例如,分子流行病学研究报告了各种癌症类型中有缺乏的MMR(DMMR)和MSI的速率不同。此外,对这两种测试的直接比较表明,MMR IHC和MSI测试之间的差异相对频繁,尤其是在非直肠直肠癌和非内膜癌症中,对于异常的DMMR表型。也有分散的临床数据表明,如果患者选择基于DMMR与癌症的MSI状态,则免疫检查点抑制剂的效率是不同的。所有这些观察结果都提出了当前的教条,即DMMR表型和遗传MSI状态是免疫疗法的相等预测标记。
5 https://www.cdc.gov/diabetes/basics/getting-tested.html 6 https://www.cdc.gov/diabetes/basics/prediabetes.html 7 美国疾病控制与预防中心。2017 年国家糖尿病统计报告。佐治亚州亚特兰大:美国卫生与公众服务部疾病控制与预防中心;2017 年。 8 马里兰州行为风险因素监测系统 (BRFSS),2017 年。 9 美国人口普查,2017 年。 10 糖尿病护理。2019 年 1 月 1 日;第 42 卷补编 1。 11 根据马里兰州成年人口,来源:美国 2017 年人口普查;2017 年马里兰州 BRFSS;以及疾病控制与预防中心。2017 年国家糖尿病统计报告。佐治亚州亚特兰大:美国卫生与公众服务部疾病控制与预防中心; 2017。12 根据马里兰州成年人口,资料来源:美国 2017 年人口普查;2017 年马里兰州 BRFSS;以及疾病控制与预防中心。国家糖尿病统计报告,2017 年。佐治亚州亚特兰大:美国卫生与公众服务部疾病控制与预防中心;2017 年。类别不相等,此图中的百分比不等于 100。
大卵)在马来西亚种质。摘要目的:这项研究的主要目的是量化在马来西亚半岛上收集的火炬姜质种质的定量性状之间的遗传变异性和关系。研究设计:最初,实验设计是随机的完整块设计(RCBD),但由于种植材料有限而导致复制数量不相等。研究的地点和持续时间:这项研究是在马来西亚,马来西亚的马来西亚农业研究与发展研究所(Mardi)研究站进行的,该研究站在马来西亚,马来西亚,纬度为04°57.704'N和经度103°11.007'E。从2010年6月到2013年5月,收集了有关农业形态表征的数据。方法论:总共从七个马来西亚半岛马来西亚的各种野生/耕种来源收集了57种火炬姜搭化。该系列于2009年种植,并作为生活收藏。在三个月大的火炬手时,将植物植物移植到20 cm×20 cm×20 cm的孔中,该孔在涵洞的直径为100 cm。行之间的涵洞的间距分别为2 m。最初,实验设计是随机的完整块设计(RCBD),但由于种植材料有限而导致复制数量不相等。从2010年6月到2013年5月,收集了有关农业形态表征的数据。总共使用了6个定性和16个定量描述符。广泛的遗传力根据Zingiberaceae家族的属描述符列表,所有57个加入均以一些修改为特征。计算每个定量性状数据的平均值并进行统计分析,以评估使用方差分析(ANOVA)的遗传变异量。ANOVA使用SAS 9.4软件的Proc GLM(SAS Institute Inc.,Cary,NC,USA)。变异和误差方差的基因型系数估计了SAS 9.4软件I型I型I型I类型。的表型变异系数,遗传力和遗传进步。Pearson相关系数使用SAS 9.4确定,以比较不同性状之间的关系。通过使用NTSYS-PC版本2.1进行的群集分析和主成分分析(PCA),通过数值分类法和主成分分析(PCA)分析了形态特征。PCA,以确定火炬姜匹配的遗传变异。进行了簇和PCA,以揭示火炬姜加入的聚类和分组模式。欧几里得距离系数,然后将其用于呈现群集分析。结果:方差分析表明,大多数特征的57个加入之间存在高度显着的差异。火炬姜的57个饰品在定性和定量性状上都显示出很高的变异性。在定量性状中,从尖峰数量数量为44.25%,观察到最高的CV。16个形态特征的变异遗传系数范围为9.76%至45.86%。