人工智能 (AI) 是指通过算法或规则制造智能机器的工程和科学,模仿人类的认知功能,例如学习和解决问题。AI 有几个分支,例如机器学习和深度学习,可以为应用程序添加智能。机器学习是研究算法的学科,算法允许计算机程序通过经验自动改进。深度学习算法从大量、多层次的相互关联的过程中学习,并将这些处理器暴露给许多示例。在未来几年,AI 与常规医疗保健的整合预计将彻底改变医学,有可能改善患者护理和生活质量。当 AI 协助临床医生时,诊断所需的时间可以大大减少,诊断效率可以显著提高。大型语言模型聊天机器人能够进行临床专家级的医疗笔记记录、咨询和问答。聊天机器人可以生成类似人类的文本,可能有助于根据医疗记录诊断疾病,并可能建议治疗方案或计划。人工智能算法,特别是深度学习,在放射图像分析和诊断方面取得了显著进展,可以提高放射科医生的效率。这些算法还可以提高皮肤病学、组织病理学、眼底镜检查、内窥镜检查和其他医学图像的诊断准确性。自然语言处理和环境临床智能可以自动执行行政职责,例如在电子健康记录中记录患者就诊情况,简化临床工作流程,并让医生有更多时间与患者相处。人工智能还可以帮助新药发现、精准医疗和临床研究。人工智能的发展可以彻底改变多个与医疗保健相关的领域,并为更加个性化、准确、可预测和便携的未来铺平道路。
摘要 目的 目前,人工智能 (AI) 应用于临床放射学的研究已非常丰富。然而,这些研究的设计和质量各不相同,而且缺乏对整个领域的系统评价。本系统评价旨在确定所有使用深度学习进行放射学研究的论文,以调查文献并评估其方法。我们旨在确定文献中正在解决的关键问题,并确定所采用的最有效方法。方法 我们遵循 PRISMA 指南,对 2015 年至 2019 年发表的放射学人工智能研究进行了系统评价。我们发表的方案是前瞻性注册的。结果 我们的搜索产生了 11,083 个结果。审查了 767 篇全文,纳入了 535 篇文章。98% 是回顾性队列研究。纳入的患者中位数为 460。大多数研究涉及 MRI(37%)。神经放射学是最常见的亚专科。88% 的研究使用了监督学习。大多数研究进行了分割任务(39%)。37% 的研究使用最先进的模型进行性能比较。最常用的既定架构是 UNet(14%)。最常用的评估指标的中位性能为 Dice 0.89(范围 .49 – .99)、AUC 0.903(范围 1.00 – 0.61)和准确度 89.4(范围 70.2 – 100)。在 77 项对其结果进行了外部验证并允许直接比较的研究中,外部验证后的性能平均下降了 6%(范围从增加 4% 到下降 44%)。结论 本系统评价调查了 AI 在临床放射学中的重大进展。要点 • 虽然有许多论文报告了使用深度学习在放射学中取得的专家级结果,但大多数论文仅将狭窄范围的技术应用于狭窄的用例选择。• 文献以回顾性队列研究为主,外部验证有限,存在很高的偏见可能性。• 最近出现的 AI 扩展系统报告指南和前瞻性试验注册以及对外部验证和解释的关注表明,AI 的炒作有可能从代码转化为临床。
人工智能 (AI) 已成为神经病学领域的一种强大工具,对神经系统疾病的诊断和治疗产生了重大影响。最近的技术突破使我们能够获得与神经病学许多方面相关的大量信息。神经科学和人工智能有着悠久的合作历史。除了巨大的潜力之外,我们还遇到了与数据质量、道德以及将数据科学应用于医疗保健的固有困难相关的障碍。神经系统疾病由于其复杂的表现和多变性而带来了复杂的挑战。通过自动执行图像解释任务,AI 算法可以准确识别大脑结构并检测异常。这加快了诊断速度并减少了医疗专业人员的工作量。治疗优化受益于 AI 模拟,它可以模拟不同的场景并预测结果。这些 AI 系统目前可以执行生物系统的许多复杂感知和认知能力,例如物体识别和决策。此外,AI 正在迅速被用作神经科学研究的工具,改变了我们对大脑功能的理解。它能够彻底改变我们所知的医疗保健,使其成为一个人类和机器人合作为患者提供更好护理的系统。图像分析活动(例如识别特定大脑区域、计算大脑体积随时间的变化以及检测脑部扫描中的异常)可以由人工智能系统自动执行。这减轻了放射科医生和神经科医生的压力,同时提高了诊断的准确性和效率。现在很明显,尖端人工智能模型与高质量临床数据相结合将增强神经系统疾病的预后和诊断模型,从而允许在整个医疗保健环境中提供专家级临床决策辅助。总之,人工智能与神经病学的融合彻底改变了诊断、治疗和研究。随着人工智能技术的进步,它们有望进一步解开神经系统疾病的复杂性,从而改善患者护理和生活质量。人工智能与神经病学的共生让我们看到了创新和同情心融合重塑神经医疗保健的未来。本摘要简要概述了人工智能在神经病学中的作用及其变革潜力。
人工智能(AI)已成为神经病学领域的强大工具,严重影响了神经系统疾病的诊断和治疗。最近的技术突破使我们获得了与神经病学许多方面相关的大量信息。神经科学和AI拥有悠久的协作历史。在巨大的潜力上,我们遇到了与数据质量,道德和在医疗保健中应用数据科学的固有困难有关的障碍。神经系统疾病由于其复杂的表现和可变性而构成了复杂的挑战。自动化图像解释任务,AI算法准确地识别大脑结构并检测异常。这可以加速诊断并减少医疗专业人员的工作量。治疗优化受益于对不同情况和预测结果的AI模拟的好处。这些AI系统目前可以执行生物系统的许多复杂的知觉和认知能力,例如对象识别和决策。此外,AI迅速被用作神经科学研究的工具,改变了我们对大脑功能的理解。它具有彻底改变医疗保健的能力,因为我们知道它进入了一个系统,在该系统中,人类和机器人合作为患者提供更好的护理。图像分析活动,例如识别特定的大脑区域,计算随时间的计算大脑体积的变化以及检测脑扫描异常可以由AI系统自动化。这减少了放射科医生和神经科医生的压力,同时提高了诊断准确性和效率。现在很明显,与高质量的临床数据相结合的尖端人工智能模型将导致神经疾病中的预后和诊断模型增强,从而允许跨医疗保健环境的专家级临床决策辅助工具。总而言之,AI与神经病学的整合彻底改变了诊断,治疗和研究。随着AI技术的发展,他们承诺将进一步揭示神经系统疾病的复杂性,从而改善患者护理和生活质量。AI和神经病学的共生,可以瞥见创新和同情融合神经医疗保健的未来。此摘要提供了AI在神经病学及其变革潜力中的作用的简洁概述。
人工智能 (AI) 已成为神经病学领域的强大工具,对神经系统疾病的诊断和治疗产生了重大影响。最近的技术突破使我们能够获得与神经病学许多方面相关的大量信息。神经科学和人工智能有着悠久的合作历史。除了巨大的潜力之外,我们还遇到了与数据质量、道德以及将数据科学应用于医疗保健的固有困难相关的障碍。神经系统疾病由于其复杂的表现和多变性而带来了错综复杂的挑战。通过自动执行图像解释任务,AI 算法可以准确识别大脑结构并检测异常。这加快了诊断速度并减少了医疗专业人员的工作量。治疗优化受益于 AI 模拟,它可以模拟不同的场景并预测结果。这些 AI 系统目前可以执行生物系统的许多复杂感知和认知能力,例如物体识别和决策。此外,AI 正在迅速被用作神经科学研究的工具,改变了我们对大脑功能的理解。它能够彻底改变我们所知的医疗保健,使其成为一个人类和机器人协作为患者提供更好护理的系统。图像分析活动,例如识别特定大脑区域、计算大脑体积随时间的变化以及检测脑部扫描中的异常,都可以由 AI 系统自动执行。这减轻了放射科医生和神经科医生的压力,同时提高了诊断的准确性和效率。现在很明显,尖端人工智能模型与高质量临床数据相结合将带来增强的神经系统疾病预后和诊断模型,从而允许在医疗保健环境中提供专家级临床决策辅助。总之,人工智能与神经病学的结合彻底改变了诊断、治疗和研究。随着人工智能技术的进步,它们有望进一步解开神经系统疾病的复杂性,从而改善患者护理和生活质量。人工智能与神经病学的共生让我们看到了未来,创新和同情心将汇聚在一起,重塑神经医疗保健。本摘要简要概述了人工智能在神经病学中的作用及其变革潜力。
糖尿病视网膜病变 (DR) 是全球劳动年龄人口失明和视力障碍的主要原因 (1)。大量研究表明,及早发现和及时治疗 DR 可以防止 90% 以上的糖尿病患者出现严重的视力丧失 (2,3)。然而,由于视网膜专家严重短缺,欠发达国家很大一部分患者无法接受协议推荐的年度眼科检查 (4,5)。面对全球糖尿病发病率的快速上升 (6),迫切需要一种新的糖尿病管理方法。已经证实,在接受眼底照相阅读培训后,非眼科医生在发现 DR 方面与眼科医生一样高度敏感 (7)。对非眼科阅读人员的培训似乎是他们融入糖尿病眼部筛查的重要一步。准确的 DR 临床分期是选择最合适的个性化治疗的先决条件。基于彩色眼底照相的早期治疗糖尿病视网膜病变研究 (ETDRS) 目前已成为 DR 分级的金标准 (8)。尽管如此,由于实际病例的个体差异,图像识别的训练过程具有很大的实施复杂性。为了获得在日常临床实践中确立诊断的技能,受训人员需要从大量的图像中学习以提取图像特征。但由于资源、人员和资金的限制,培训机会可能会被压缩 (9)。此外,即使是高素质的教师也可能存在主观性,并且在读者内部和读者之间的诊断方面也存在差异 (10)。传统的眼科学课程通常无法提供大量标准化案例用于培训。近年来,人工智能 (AI) 在主要眼部疾病的诊断和预测方面表现出明显优势,特别是那些涉及图像分析的疾病 (11-13)。使用人工智能的自动视网膜图像筛查系统的最新进展表明,在 DR 评估中可以达到专家级别的准确度(10、14)。大数据和人工智能技术在教育环境中的实施也显示出提高教学效率的巨大潜力(15)。从大数据中提取的重要信息有助于缩短培训时间并改善学生的学习曲线。然而,人工智能作为考试系统和/或机器人教师为医学生和受训人员提供个性化教育的潜力需要进一步评估。在本研究中,我们开发了一种基于人工智能的自动 DR 评分系统,配备了人工智能驱动的诊断算法,并验证了其作为培训非眼科医生进行 DR 人工评分的教学和学习工具的作用。
随着深度学习在医学成像领域的应用呈爆炸式增长,由于人工智能技术的复杂性/多样性增加、这些新技术对大型数据集的依赖以及人工智能系统新型临床应用的出现,迫切需要开发评估人工智能系统性能的方法。需要适当的测试方法、指标、适当的训练/调整/验证研究设计和统计分析方法,以确保研究以最不繁琐的方式产生有意义、稳健和可推广的结果。这些要素是临床采用人工智能技术的关键。因此,《医学成像杂志》第 7 卷第 1 期的特别版块鼓励在这些主题领域提交相关投稿。人工智能对医学成像来说并不陌生。自 SPIE 医学成像研讨会成立之初,就一直有关于当时称为计算机辅助诊断 (CAD) 的演讲。计算机辅助诊断会议在规模更大的 SPIE 医学成像 (MI) 研讨会上于 2006 年启动。CAD 在乳房 X 光检查、肺部 CT 和胸部 X 光成像中的应用,如今都是成熟的商业产品,在本次会议上进行了早期阶段的讨论。SPIE MI 也是引入 CAD 算法评估新方法的场所,这一传统主要通过图像感知、观察者表现和技术评估会议延续下来。多年来,通过仔细阅读 SPIE MI 计划,读者可以看到 AI 算法开发以及 AI 评估方法的进展。AI 的新特点是计算能力的进步和大数据集的可用性,这使得深度神经网络 (DNN) 架构能够成功应用于各种医学成像任务。这些任务包括该领域中常见的应用,包括查找图像中的可疑区域以供读者再次查看,以及在 AI 的支持下对读者确定的可疑区域进行表征。DNN 正在应用于较新的任务,包括图像去噪、从高度稀疏或非常嘈杂的投影中进行完整图像重建、提醒用户注意高优先级病例以调整病例阅读顺序的分类系统、基于每个患者的 AI 选择的图像采集参数,以及用于在复杂成像场景中衡量图像质量的理想观察者的近似值。社区需要开发对于某些应用,AI 的性能已被证明达到或超越了专家级人类性能,因此,由 AI 系统取代临床医生的自动诊断可以说近在咫尺。此外,AI 所应用的成像模式范围非常广泛,从上面列出的 X 射线应用到光学、超声、MRI 和数字病理学,后者最近在 SPIE MI 研讨会上作为自己的会议主题引入。在广泛而多样的 AI 应用和适应症领域中,需要能够准确评估可推广到临床的设备性能的 AI 算法评估方法。需要方法来评估旨在作为辅助或第二读者超越 AI 标准范式的 AI 系统。我们需要方法来确定 AI 系统是否可以可靠地用于排除医生审查的图像(即部分替代临床医生),以及完全自动化诊断(无需人工参与)。
A.利益声明 VT-ARC 和 VT 都非常有兴趣支持美国国家标准与技术研究所 (NIST) 开发一个框架,该框架可用于改善与人工智能 (AI) 相关的个人、组织和社会风险管理。VT-ARC 和 VT 共同努力支持许多不同的人工智能 (AI) 和机器学习 (ML) 计划,并提供 AI/ML 领域最前沿的技术进步。弗吉尼亚理工大学应用研究公司 (VT-ARC)。VT-ARC 是一家私营非营利性 501(c)(3) 应用研究公司,隶属于弗吉尼亚理工学院暨州立大学 (Virginia Tech 或 VT)。VT-ARC 通过识别、开发和应用创新分析和先进技术来加速解决具有国家重要意义的复杂问题。我们利用弗吉尼亚理工大学丰富的多学科研究和创新生态系统,将多个领域的战略、政策、技术和运营考虑因素结合起来。VT-ARC 在过去 10 年中与多个联邦政府组织、行业合作伙伴、国防部创新组织以及其他高等教育和研究机构合作良好。VT-ARC 已在两个单独的 PIA 上进行过表演,一个与 ARL 合作近五年,另一个与 AFRL/AFOSR 合作七年。我们的合作伙伴包括 ARL、ARO、AFOSR、OUSDR&E 和 DTRA。我们目前支持 16 个研究、开发、规划和测试项目。VT-ARC 总部位于弗吉尼亚州阿灵顿,总面积超过 16,000 平方英尺,包括 13,000 平方英尺的非机密办公空间、额外的 TS 安全机密空间以及可容纳多达 200 人活动的场地建筑通道。我们的第二个办公室位于弗吉尼亚州布莱克斯堡。虽然 VT-ARC 没有指定的实验室空间,但我们可以通过弗吉尼亚理工大学使用大学实验室空间。VT 休谟中心智能系统实验室 (ISL)。弗吉尼亚理工大学休谟中心认为,为学生提供研究机会是培养下一代国家安全和技术领导者的关键。我们的研究机会让学生能够在他们喜欢的学科中获得实践经验,与该领域屡获殊荣和专家级的研究人员建立联系,并更充分地探索学科,将兴趣发展为激情和职业。英联邦网络计划 (CCI)。随着包含机器学习的算法被集成到生产系统中,数据科学、机器学习和网络安全之间的界限变得越来越模糊。还需要通过严格的测试和评估流程对复杂系统进行验证,以确保嵌入在系统中的算法在完成具有更大自主性和操作影响的任务时的有效性和安全性。这些系统的设计和开发需要反映其预期的操作环境、代表性人类用户和操作任务/任务。休姆中心的 ISL 开展研究,以解决三个技术重点中的国家安全关键领域:1) 数据科学、机器学习、人工智能,2) 网络安全和复杂系统工程,以及 3) 复杂系统设计、验证和测试与评估 (T&E)。VT 在开发 AI 保证方法和管理 CCI AI 测试平台方面发挥着领导作用。CCI 支持来自 30 多所不同弗吉尼亚大学和学院的 70 多名参与者。CCI 的 AI 保证团队开发模型
4) Scheffer IE、Berkovic S、Capovilla G 等。ILAE 癫痫分类:ILAE 分类和术语委员会立场文件。癫痫 2017;58:512-21。5) Gibbs FA、Gibbs EL。脑电图图集。第 1 卷:方法和对照。马萨诸塞州雷丁:Addison-Wesley,1951 年。6) Yoshida Harumi。应用等电位脑电图对小儿脑电图发育的研究。 脑电图和肌电图 1984 ; 12 : 248-60。7) Yoshinaga H, Koutroumanidis M, Kobayashi K, et al. Panayiotopoulos 综合征的脑电图偶极子特征。癫痫 2006 ; 47 : 781-7。8) Seeck M, Koessler L, Bast T, et al. IFCN 的标准化脑电图电极阵列。临床神经生理学 2017 ; 128 : 2070-7。9) Otsubo H, Sharma R, Elliott I, Holowka S, Rutka JT, Snead OC 3rd. 通过侵入性监测硬膜下电极确认患有右额中央癫痫的青少年的两个脑磁图癫痫灶。癫痫1999;40:608-13。10) Shiraishi H、Ahlfors SP、Stufflebeam SM 等。比较三种用脑磁图定位发作间期癫痫样放电的方法。J Clin Neurophysiol 2011;28:431-40。11) Kobayashi K、Akiyama T、Oka M、Endoh F、Yoshinaga H。West 综合征患者在高峰失常期间出现快速(40-150 Hz)振荡风暴。Ann Neurol 2015;77:58-67。12) Kobayashi K、Watanabe Y、Inoue T、Oka M、Yoshinaga H、Ohtsuka Y。儿童睡眠诱发的电癫痫持续状态中头皮记录的高频振荡。癫痫2010;51:2190-4。13) Cao J,Zhao Y,Shan X,等。基于脑电图记录的大脑功能和有效连接:综述。Hum Brain Mapp 2022;43:860-79。14) Willett FR,Avansino DT,Hochberg LR,Henderson JM,Shenoy KV。通过手写实现高性能的脑到文本通信。Nature 2021;593:249-54。15) Jing J,Sun H,Kim JA,等。脑电图解释过程中癫痫样放电专家级自动检测的开发。JAMA Neurol 2020;77:103-8。16) Kobayashi K,Shibata T,Tsuchiya H, Akiyama K. 基于人工智能的儿科头皮脑电图癫痫放电检测:一项初步研究。Acta Med Okayama 2022;76:617-24。17)Scheffer LK、Xu CS、Januszewski M 等。成年果蝇中枢脑的连接组和分析。Elife 2020;9:e57443。18)Cutsuridis V、Cobb S、Graham BP。海马 CA1 微电路模型中的编码和检索。海马 2010;20:423-46。19)Kobayashi K、Akiyama T、Ohmori I、Yoshinaga H、Gotman J。动作电位导致用远离神经元的电极记录的癫痫高频振荡。临床神经生理学2015;126:873-81。
A.利益声明 VT-ARC 和 VT 都非常有兴趣支持美国国家标准与技术研究所 (NIST) 开发一个框架,该框架可用于改善与人工智能 (AI) 相关的个人、组织和社会风险管理。VT-ARC 和 VT 共同努力支持许多不同的人工智能 (AI) 和机器学习 (ML) 计划,并提供 AI/ML 领域最前沿的技术进步。弗吉尼亚理工大学应用研究公司 (VT-ARC)。VT-ARC 是一家私营非营利性 501(c)(3) 应用研究公司,隶属于弗吉尼亚理工学院暨州立大学 (Virginia Tech 或 VT)。VT-ARC 通过识别、开发和应用创新分析和先进技术来加速解决具有国家重要意义的复杂问题。我们利用弗吉尼亚理工大学丰富的多学科研究和创新生态系统,将多个领域的战略、政策、技术和运营考虑因素结合起来。VT-ARC 在过去 10 年中与多个联邦政府组织、行业合作伙伴、国防部创新组织以及其他高等教育和研究机构合作良好。VT-ARC 已在两个单独的 PIA 上进行过表演,一个与 ARL 合作近五年,另一个与 AFRL/AFOSR 合作七年。我们的合作伙伴包括 ARL、ARO、AFOSR、OUSDR&E 和 DTRA。我们目前支持 16 个研究、开发、规划和测试项目。VT-ARC 总部位于弗吉尼亚州阿灵顿,总面积超过 16,000 平方英尺,包括 13,000 平方英尺的非机密办公空间、额外的 TS 安全机密空间以及可容纳多达 200 人活动的场地建筑通道。我们的第二个办公室位于弗吉尼亚州布莱克斯堡。虽然 VT-ARC 没有指定的实验室空间,但我们可以通过弗吉尼亚理工大学使用大学实验室空间。VT 休谟中心智能系统实验室 (ISL)。弗吉尼亚理工大学休谟中心认为,为学生提供研究机会是培养下一代国家安全和技术领导者的关键。我们的研究机会让学生能够在他们喜欢的学科中获得实践经验,与该领域屡获殊荣和专家级的研究人员建立联系,并更充分地探索学科,将兴趣发展为激情和职业。英联邦网络计划 (CCI)。随着包含机器学习的算法被集成到生产系统中,数据科学、机器学习和网络安全之间的界限变得越来越模糊。还需要通过严格的测试和评估流程对复杂系统进行验证,以确保嵌入在系统中的算法在完成具有更大自主性和操作影响的任务时的有效性和安全性。这些系统的设计和开发需要反映其预期的操作环境、代表性人类用户和操作任务/任务。休姆中心的 ISL 开展研究,以解决三个技术重点中的国家安全关键领域:1) 数据科学、机器学习、人工智能,2) 网络安全和复杂系统工程,以及 3) 复杂系统设计、验证和测试与评估 (T&E)。VT 在开发 AI 保证方法和管理 CCI AI 测试平台方面发挥着领导作用。CCI 支持来自 30 多所不同弗吉尼亚大学和学院的 70 多名参与者。CCI 的 AI 保证团队开发模型