摘要的目的是报告使用大麻二酚(CBD)在治疗焦虑症中的有效性,因为人类神经成像研究表明,其作用发生在与焦虑有关的Lybic大脑区域。进行了分析,用于了解其焦虑症患者的机制的不受控制的剂量和量。这是一项综合评论,并在以下平台中收集文章:拉丁美洲和加勒比健康科学文学(淡紫色)和美国国家医学图书馆(PubMed)。维持主题并证实了文章的使用“大麻二酚”,“大麻二酚”,“治疗”,“焦虑症”,“焦虑症”和“ CBD”。“治疗”。作为纳入标准:在过去的05年中发表的文章,自由访问和作为排除疗法研究的标准与四氢可纳比尼醇(THC)和动物分析相结合。在具有良好安全性的焦虑治疗中观察到大麻二醇的治疗潜力;在促进恐惧灭绝和减少恐惧行为的灭绝方面的作用;与最近的研究相反,除了没有四氢可纳曲奈醇生物转化(THC)的口服CBD以外。得出的结论是,除了减少氧化应激之外,大麻二醇还充当炎症过程的调节剂,与焦虑症的常规治疗相比,它是一种有害的替代方案,但在焦虑症治疗中的使用仍然需要更加谨慎的方法进行更多的研究。关键字:大麻二酚;焦虑症;治疗。
上级法院的当前。本文旨在丰富对药用大麻的理解,鼓励在医疗形成中引入主题。方法论:在填充包含标准中,发现了32篇文章的Medline/PubMed和Scielo数据库中的文学评论。结果:最著名的内丙替诺碱是Anandamide(N-Araquidonoil乙醇胺)和2-Araquidonoil甘油(2-AG),这些是通过膜酸和DHA(源自Omegas 3和6)的需求中的膜磷脂生产的。作用于内型抗蛋白系统的主要酶是NAP-PLD,N-ACIL PHOSPASTIDILEMANOLINE,磷脂酶D,FAAH,DGLA和DGLβ,MAGL,ABHD,ABHD和ABHD12。SEC涉及的主要受体为:CB1和CB2。我们看到,许多疾病和疾病都通过使用大麻二酚(例如焦虑和睡眠障碍)来控制,此外,我们还可以提及癫痫治疗的空间。通过各种方式急性或长期给药大麻二酚不会导致变化或导致损失作为重大毒性作用或在神经检查中引起任何变化。研究表明,帕金森氏病患者的治疗和行为中的大麻反应呈阳性,并且也有足够的证据表明在运动障碍以及非运动症状的患者中使用大麻衍生物。医疗专业人员应始终意识到治疗和使用大麻的迹象的新进展。结论:工作在当前立法的概念中表达了法律,以及针对医学目的的关于大麻二酚的讨论的当前法院的理解。因此,与《医学伦理守则》有关的哲学从医疗职责中带来了批判性的反映,这将是对辩论充实的技术支持,为这些专业人员的未来做好了综合医疗保健的准备。关键字:大麻二酚,疾病,立法,生理学,医学伦理守则,医学教育。摘要简介:大麻具有一百多个化学成分,包括Delta-9-四氢大麻酚(THC)和大麻二酚(CBD)。这些物质揭示了各种各样的生物学作用,为治疗医疗状况打开了门。尽管许多国家的进步使大麻的医学使用合法化,但巴西FAC是复杂的法律景观。大麻素的治疗特性,其基本的作用机制和所涉及的法律含义将得到解决。从法律的角度来看,我们将提出立法范围和对高等法院的当前理解。本文旨在通过鼓励在医学培训中引入该主题来丰富有关医用大麻的知名度。方法论:Medline/PubMed和Scielo数据库中的文学综述,其中38篇文章被包括在内,因为它们符合纳入标准。作用于内源性大麻素系统的主要酶是NAP-PLD,N-酰基磷脂乙醇胺,磷脂酶D,FAAH,DGLA和DGLβ,MAGL,ABHD和ABHD12。结果:最著名的内源性大麻素是anandamide(n-蛛网膜乙醇胺)和2-芳基二酮甘油(2-AG),它们是通过膜磷脂的磷脂生产的。SEC涉及的主要接收器是CB1和CB2。我们看到,许多疾病和疾病通过使用大麻二酚作为焦虑和睡眠障碍而受到控制,而且我们可以提及癫痫治疗的空间。通过多种途径急性或长期给药大麻二酚不会导致改变或损害作为显着毒性作用或在神经检查中引起某些改变。研究表明,大麻在帕金森氏症患者的治疗和行为中的正面反应
使用非食品和药物管理局(FDA)批准的大麻二酚或CBD近年来引起了人们的关注,因为CBD越来越流行,并且正在针对各种健康状况进行销售。1一项对18岁及以上的美国成年人的民意调查发现,2019年有14%的人报告使用CBD产品,而在2020年进行了类似的民意调查发现,有三分之一的成年人报告使用CBD产品。2-3然而,未经FDA批准的商业CBD产品向公众销售并在计数器上可用,与临床研究中的成分有很大差异,其中4个,有限的证据以支持其安全性。5公众应意识到CBD产品的误解以及与使用相关的潜在危害和风险。
摘要:酚类化合物是植物的生物活性代谢物,因其对人类健康具有广泛益处而受到广泛研究。由于目前人们对天然化合物的鉴定和表征越来越感兴趣,因此开发了基于先进技术的新型分析方法。本文总结了多酚鉴定和定量的最新进展。讨论了从高压液相色谱法到联用光谱法等分析技术。特别讨论了高分辨率质谱法,从目标定量到非目标综合化学分析。结构解析是天然产物研究的重要步骤之一。讨论了质谱数据处理方法,包括采集模式选择、精确质量测量、元素组成、质谱库搜索算法和通过质量碎裂途径进行结构确认。
摘要:大麻二酚(CBD)具有多种治疗性好处,需要通过优化其生物利用度来最大化。因此,开发了许多制剂,需要研究其药物的药物,需要静脉内给药的分析方法和数据。由于CBD易受肝代谢的影响,任何方法的要求是量化7-COOH-CBD等代谢物。我们证明了CBD和7-COOH-CBD可以通过使用UHPLC-MS/MS技术在Piglet血浆中同时并正确量化。经过验证的方法允许对由CBD-HPβCD复合物组成的静脉注射溶液进行精确的生物分析。CBD的实验性药代动力学表明表现出多指数衰减,其特征是快速表观分布半衰期(0.25 h)和消除半衰期为两个小时。7-COOH-CBD的验证与第一通道代谢无关,因为在第一个采样时间点达到了最大代谢物浓度的80%,但在研究期间没有任何降低。一个两室模型是最佳描述实验CBD PROFE的最佳选择。该模型使我们能够计算宏 - 微型常数和分布量(V s = 3260.35±2286.66 ml)和清除率(1514.5±261.16 ml·H -1),表明CBD迅速分布到一旦释放到外围组织,并将其缓慢地释放为鲜血的细胞。
电子邮件:sandra.ortiz@sajudas.br摘要阿尔茨海默氏病的特征是β-淀粉样蛋白斑的积累,大麻二酚的可能施用可能会降低β-淀粉样蛋白板的积累,并在老化过程中可能改善神经塑性。从大麻中提取的大麻二醇出现是与星形胶质细胞相互作用的一种可能的策略,减少了促炎功能并研究β-淀粉样蛋白诱导的神经元死亡,因为它可以消除活性氧的能力,因为它在脂质过多时会引起人们对神经造于兴趣的影响,从而降低了对脂质过多的影响,从而使您的过程变得有趣,这是对神经造于兴趣的影响,这是对神经造成的有趣感,而感兴趣的是,它具有有趣的过程。神经系统是神经变性的重要改变,存在于帕金森氏病和阿尔茨海默氏病等疾病中。鉴于这种可能的治疗形式,本研究旨在验证大麻二酚导致阿尔茨海默氏病神经可塑性的机制。使用根据“峰值搜索策略”定义的特定描述符详细阐述了这一综合审查,其中包括以下描述符:P(人口) - 阿尔茨海默氏病; I(干预) - 使用大麻二酚; C(比较)作用和神经塑性机理;此外,布尔运营商“和”。申请
出生对心肌细胞提出了代谢挑战,因为它们将燃料偏好从葡萄糖重塑为脂肪酸,以产生产后产生1,2。这种适应性部分是由产后环境变化触发的3,但是编排心肌细胞成熟的分子仍然未知。在这里我们表明,这种过渡是由母体提供的γ-亚麻酸(GLA)协调的,富含母牛奶中的18:3 omega-6脂肪酸。GLA结合并激活类维生素X受体4(RXR),配体调节的转录因子,这些转录因子在胚胎阶段在心肌细胞中表达。多方面的全基因组分析表明,胚胎心肌细胞中缺乏RXR引起异常的染色质景观,从而阻止了控制RXR依赖性基因表达的诱导,从而控制了线粒体脂肪酸稳态。随之而来的有缺陷的代谢过渡具有钝性的线粒体脂质衍生的能量产生和增强的葡萄糖消耗,从而导致心脏心脏功能障碍和死亡。最后,GLA补充诱导了在体外和体内心肌细胞中线粒体脂肪酸稳态的RXR依赖性表达。因此,我们的研究将GLA -RXR轴确定为围产期心脏代谢的母体控制的关键转录调节机制。
https://doi.org/10.26434/chemrxiv-2024-d4lpr orcid:https://orcid.org/0000-0000-0003-2925-842x内容不受ChemRxiv的同行评审。许可证:CC BY-NC-ND 4.0
背景:大麻二酚(CBD)是大麻sativa L.的主要组成部分之一,它缺乏精神病和奖励性能,并抑制可卡因,甲基苯丙胺(甲基苯丙胺(Methamine)和吗啡的成瘾性药物(如可卡因)和吗啡的奖励和增强作用。此外,目前在几种医疗状况中评估了CBD的安全性和治疗潜力,包括疼痛,抑郁,运动障碍,癫痫,多发性硬化症,阿尔茨海默氏病,缺血和药物使用障碍。没有有效的药物使用障碍治疗(例如成瘾),这项综述旨在描述CBD对各种阿片类药物,心理刺激,大麻,酒精,酒精和尼古丁的影响的临床前和临床研究。此外,还审查了CBD对药物滥用障碍的治疗潜力的可能机制。
SIAR 人类健康排泄、分布和药代动力学研究的总结,已使用 14 C-邻苯二甲酸二烯丙基酯 (DAP) 对大鼠和小鼠进行了研究。在排泄和分布研究中,通过管饲法施用 14 C-DAP,并收集 14 CO 2 、挥发性代谢物、尿液和粪便 24 小时。在大鼠中,25 – 30% 的 DAP 以 CO 2 形式排泄,50 – 70% 在 24 小时内出现在尿液中。在小鼠中,6 – 12% 的 DAP 以 CO 2 形式排泄,80 – 90% 在 24 小时内随尿液排泄。对通过尾静脉注射 14 C-DAP 的大鼠和小鼠进行了组织分布和药代动力学研究。发现 DAP 从大鼠和小鼠的血液中迅速清除,两种物种的半衰期约为 2 分钟。在两种物种中静脉注射 DAP 30 分钟后,血液、肝脏、肾脏、肌肉、皮肤或小肠中均未发现 DAP。在注射 14 C-DAP 的大鼠和小鼠的尿液中发现了邻苯二甲酸单烯丙酯 (MAP)、烯丙醇 (AA)、3-羟丙基硫脲酸 (HPMA) 和一种未知的极性代谢物。注射 DAP 或 AA 后,大鼠尿液中存在极性代谢物,表明该化合物是 AA 的代谢物。DAP 对大鼠的肝毒性比对小鼠的更大。在 AA 的毒性方面观察到了相同的物种差异。由于 DAP 代谢为 AA,因此推测 DAP 的差异性肝毒性与 AA 的毒性有关。AA 是一种强效的门脉周围肝毒性物质,由于小鼠产生的 HPMA 作为 II 期代谢的副产物比大鼠多,因此推测 DAP 的差异性肝毒性与谷胱甘肽与 AA 或丙烯醛(AA 的活性代谢物)结合的程度有关。大鼠口服 LD 50 值 [NTP] 为 891 mg/kg bw(雄性)和 656 mg/kg bw(雌性),小鼠口服 LD 50 值 [NTP] 为 1070 mg/kg bw(雄性)和 1690 mg/kg bw(雌性)。狗口服 LD 50 约为800 mg/kg bw(合并)。经皮 LD 50(兔子)为 3300 mg/kg bw。大鼠吸入 LC 50(一小时)为 8300 mg/m 3(混合)、10310 mg/m 3(雄性)和 5200 mg/m 3(雌性)[FIFRA 指南,43FR 37336]。DAP 对兔子皮肤 [16 CFR 1500.41] 或眼睛 [FSHA 16 CFR 1500] 无刺激性。DAP 在小鼠局部淋巴结测定中具有致敏性 [OECD TG 429]。在重复剂量毒性研究 [NTP] 中,雄性和雌性大鼠(每性别每组 10 只)通过管饲法服用 DAP,剂量分别为 0、25、50、100、200 和 400 mg/kg bw/天,每周 5 天,共 13 周。八只接受 400 mg/kg bw/day 剂量的雄性大鼠在研究期间死亡或被发现处于垂死状态时被杀死。接受 400 mg/kg bw/day 剂量的雄性大鼠的体重增加似乎比对照组低。在 400 mg/kg bw/day 剂量下,两性均观察到临床症状,在 200 mg/kg bw/day 剂量下出现频率较低,但在较低剂量下未观察到临床症状。临床症状包括腹泻、毛发粗糙或头部周围脱发、驼背姿势和全身消瘦。在尸检中,所有八只早死的 400 mg/kg bw/day 雄性大鼠均观察到肝脏严重异常,其中三只雄性大鼠还表现出多灶性肾皮质小管坏死。许多雄性大鼠的肺部呈现暗色或鲜红色。在 400 mg/kg bw/day 剂量下,两只幸存的雄性大鼠和大多数雌性大鼠出现肝损伤,在 200 mg/kg bw/day 剂量下,5/10 的雄性大鼠出现肝损伤。严重程度似乎与剂量有关,雄性大鼠比雌性大鼠严重。组织病理学检查表明肝脏是主要靶器官。在 200 和 400 mg/kg bw/day 剂量下,雄性大鼠和雌性大鼠出现肝小叶门管周围损伤、坏死、纤维化、胆管增生和肝细胞增生。