关于美国国防部太空测试计划 国防部太空测试计划 (STP) 是国家安全的重要组成部分,提供任务设计、航天器采购、集成、发射和运营支持,以促进实验有效载荷进入太空领域。STP 成立于 1965 年,已执行了 300 多次任务,并继续在推进太空领域的科学知识和能力方面发挥着关键作用。 关于空间系统司令部 空间系统司令部 (SSC) 是美国空间部队野战司令部,负责获取和提供弹性作战能力,以保护我们国家在太空和来自太空的战略优势。SSC 为国防部管理 150 亿美元的太空采购预算,并与联合部队、工业界、政府机构、学术界
行业聘用人才和利用更强大计算能力的能力可能是由于支出差异而产生的。尽管公共和私营部门对人工智能的投资都大幅增加,但行业的投资规模更大且增长速度更快(见 SM)。我们将行业与公共利益人工智能研究的主要来源进行比较:政府,政府既资助自己的研究,也是学术资金的主要来源。2021 年,美国非国防政府机构在人工智能上拨款 15 亿美元。同年,欧盟委员会计划支出 10 亿欧元(12 亿美元)。相比之下,2021 年全球行业在人工智能上的支出超过 3400 亿美元,大大超过公共投资。例如,2019 年谷歌的母公司 Alphabet 在其子公司 DeepMind 上花费了 15 亿美元,这只是其人工智能投资的一部分。在欧洲,差距较小,但仍然存在; AI Watch 估计“私营和公共部门分别占欧盟 AI 投资的 67% 和 33%”(4)(见 SM)。相比之下,近几十年来,制药行业的研究资金大致平均分配给私营部门和政府或非营利组织(见 SM)。OpenAI 就是进行 AI 研究所需资金规模的一个例子,它最初是一个非营利组织,声称“不受产生财务回报需求的限制”,旨在“造福全人类”(5)。四年后,OpenAI 将其地位更改为“有上限的营利性组织”,并宣布这一变化将使他们“能够迅速增加在计算和人才方面的投资”(6)。
1999 年 2 月 23 日,丹麦发射了微型卫星 Ørsted,用于测量地球磁场。这可以看作是自 1842 年在哥本哈根防御工事的其中一座堡垒上监测地球磁场以来一系列长期调查的顶峰。 2 这项活动是由电磁学的发现者 Hans Christian Ørsted 在 1820 年提出的。它只持续了 20 年,但丹麦气象研究所于 1891 年恢复了这项活动,并从此一直保持,除了 1901 年至 1906 年期间的短暂间隔。该研究所参加了 1882 年至 1883 年的国际极地年,并在格陵兰岛的 Godthåb(努克)建立了一个地球物理观测站,随后于 1926 年在格陵兰岛的 Godhavn(Qeqertarsuaq)建立了一个永久性观测站,对地球磁场进行连续监测。
BPA 总裁兼首席执行官 Glenn Hansen 表示:“随着数百个数字平台的出现以及行业在新时代的重新崛起,迫切需要为数字活动制定与实体活动类似的分类和数据格式行业标准。我们正在追随互联网广告局 (IAB) 的脚步,该局在数字广告行业起步阶段就成功地为其制定了标准。并且,在此过程中,帮助稳定和赋能媒体和营销行业,使其在颠覆性变革时期蓬勃发展。”
先进纳米材料因其出色的光电特性,受到学术界和工业界越来越多的关注(Liu et al.,2020)。近年来,人们致力于开发高性能纳米材料,这使得其在广泛的光电应用中具有巨大潜力(Kong et al.,2021;Niu et al.,2021),特别是在发光二极管 (LED) 和太阳能电池 (SC) 方面。我们非常高兴地推出这期题为“用于发光二极管和太阳能电池的先进纳米材料”的特刊。本期特刊从不同角度强调了材料-器件研究的主要意义,结合了现代实验方法和理论模拟。我们从这个令人兴奋的领域收集了 10 篇特色文章,涵盖了用于 LED 和 SC 开发的先进纳米材料的新兴概念、策略和技术。简化的有机 LED(OLED)结构和可行的制造工艺在照明中起着关键作用。 Xu 等人结合了超薄非掺杂发射纳米层(0.3 纳米),展示了低效率滚降和结构简单的 OLED。同时,Xie 等人通过使用含硼和氮原子的分子作为客体发射极,开发了溶液处理的蓝色热激活延迟荧光 OLED,其半峰全宽较窄为 32 纳米,获得高色纯度 OLED。另一方面,开发新型溶液处理的空穴注入材料对于高性能 OLED 至关重要。Zhu 等人合成了二硫化钼量子点(MoS 2 QDs)并展示了具有混合聚(3,4-乙烯二氧噻吩)/聚(苯乙烯磺酸盐)(PEDOT:PSS)/QDs 空穴注入层的绿色磷光 OLED。采用PEDOT:PSS/MoS 2 空穴注入层的OLED最大电流效率为72.7 cd A −1,比单一PEDOT:PSS的OLED高28.2%,表明以硫化物QD作为空穴注入层是实现高效OLED的有效方法。GaN基LED也是很有前途的照明和显示设备。Zhang等人从实验和数值两个方面系统地研究了台面尺寸减小对InGaN/GaN LED两个横向维度的影响,为设备小型化提供了见解。而Lu等人制作并展示了各种尺寸的应变减小微型LED,并研究了尺寸对光学特性和量子阱铟浓度的影响。他们的工作为实现微型LED的高功率性能提供了经验法则。另一方面,Liu等人对GaN基LED进行了系统的研究,提出了一种新的方法来降低应变,提高LED的效率。采用氢化物气相外延与激光剥离技术联合制备缓冲层,在双抛光蓝宝石衬底上制备了厚度约为250 μm的2英寸自支撑GaN衬底,为高功率GaN基器件提供了一条途径。
2021 年 4 月 20 日 — o 向全球各部队部署了 400 多个化学和放射探测器... o 为 Stryker 核生物化学部队交付了能力集 2.0。
东西线东阳町站将于2019年9月起、丸之内线新宿站将于2020年11月起,在列车出站时对列车侧面进行除霜。
30V 器件的低 R DS(ON) 和 Qg 可在各种最终产品中的典型 DC/DC 降压和/或升压转换中实现高功率效率。它们是:PC 和图形主板、计算机外围设备、工业计算、电池供电的电动工具、家庭自动化、消费者生活方式的个人电器、无人驾驶飞行器、电池管理系统 (BMS) 等。低 V GS(th)_Typ @ 1.7V 与典型的基于 MCU 的嵌入式控制器兼容。图 1 和图 2 说明了降压转换和直流电机驱动的典型应用电路。图 3 所示的双 N 配置使 40V 器件(例如 JMSL0406AGD)特别适用于流行的快速充电器中的 V BUS 切换,该充电器具有两个输出端子:一个是 USB Type-C,另一个是 USB Type-A。
我们利用AI实现了“科学个性化的寿险和非寿险综合计划设计”和“推荐内容可视化”,并由具有强大咨询能力的代理人通过与客户对话的方式定制计划,提供符合新冠疫情时代客户多样化、数字化生活方式和需求的方案。
产品规格 产品名称 室内 AI 摄像机 室外 AI 摄像机 (IP66) 型号 SI7201TX2 SI7220TX2 电源 DC12V 或 PoE (IEEE802.3at) 防水外置电源 (单独出售) 功耗 DC12V:30W 或以下 PoE:25W 或以下 DC12V:30W 或以下 PoE:25W 或以下 工作温度 -10°C ~ +50°C -20°C ~ +50°C 存储温度 -15°C ~ +60°C -25°C ~ +60°C 音频输入/输出 内置麦克风 / LINE-OUT 连接器(机壳内) 内置麦克风 / LINE-OUT 连接器(机壳内) 视频输出 HDMI 1.4 1ch。输出类型 D 机壳连接器 HDMI 1.4 1ch。输出类型 D 外壳连接器 SD 端口 microSD 插槽 microSD 插槽 图像传感器 2.13M 像素 1/2.8” CMOS 图像传感器 2.13M 像素 1/2.8” CMOS 图像传感器 最低照度 0.1 lx 0.1 lx 镜头 90°/60°/37°/18° 出厂设置 90°/60°/37°/18° 出厂设置 分辨率 全高清 1920 x 1080 全高清 1920 x 1080 高清 1280 x 720 高清 1280 x 720 VGA 640 x 480 VGA 640 x 480 帧率 H.264 1 ~ 30FPS H.264 1 ~ 30FPS JPEG 1 ~ 30FPS JPEG 1 ~ 30FPS 比特率 64Kbps ~ 12,228Kbps 64Kbps ~ 12,228Kbps 视频编解码器 JPEG/H.264 JPEG/H.264 音频编解码器 G.711 μ-law G.711 μ-law LAN RJ-45 100Base-TX /1000Base-T WiFi 802.11ac 100Base-TX /1000Base-T WiFi 802.11ac 通信模块 内置 LTE 通信模块 NTT Docomo Xi 兼容 内置 LTE 通信模块 NTT Docomo Xi 兼容 NVIDIA Jetson TX-2 Jetson TX-2 RAM 8GB 128bit LPDDR4 8GB 128bit LPDDR4 OS L4T 28.2.1 64bit L4T 28.2.1 64bit 记录介质 microSDHC 32GB / microSDXC 62GB~512G microSDHC 32GB / microSDXC 62GB~512G 注:请注意,工业级 512GB SDXC 尚未发售。 外形尺寸(主体) W80mm x D207mm x H80mm(不包括突起部分) W120mm x D330mm x H100mm(不包括突起部分) 重量(主体) 1.15Kg 1.85Kg