水电,机构和监管机构需要能够监测水质并控制污染水平。Aquacorp已开发了一个针对淡水和废水监测的智能水AI平台,该平台是完全自动化和非接触的,可以使用多光谱和RGB摄像机对水进行远程,连续和实时的监测。vub与公司进行了一项可行性研究,涉及对水参数的光谱研究,使AI平台的改进,传感能力的扩展以及通过选择最佳摄像机填充剂和镜头来优化相机外观。
热带降水极端及其随着表面变暖的变化,使用全球风暴解析模拟和高分辨率观察结果进行了研究。模拟表明,对流的中尺度组织是不能以常规的全球气候模型来物理代表的过程,对于热带每日累积降水极端的变化很重要。在模拟和观察结果中,每日降水极端在更有条理的状态下增加,与较大但频繁的风暴有关。重复模拟以使气候变暖会导致每月均值每日降水极端的增长。较高的降水百分位数对对流组织具有更大的敏感性,预计随着变暖而增加。没有组织变化,热带海洋上最强烈的每日降水量以接近Clausius-Clapeyron(CC)缩放的速度增加。因此,在未来的温暖状态下,组织的增加,海洋的每日极端降水量最高的速度比CC缩放更快。
摘要。可验证的凭据是物理凭证的数字类似物。通过加密技术的方式保护了他们的身份和完整性,并且可以将其呈现给验证者以揭示属性甚至鉴定凭证中所包含的属性。在演示过程中保留隐私的一种方法是选择性地披露凭证中的属性。在本文中,我们提供了用于选择性披露属性的最广泛的加密机制,这些属性可以识别两类:基于隐藏承诺的属性,例如,M DL ISO/IEC 18013-5-基于非交互式零互动的零知识证明,例如,BBS签名。我们还包括用于设计此类加密机制的加密原始图的描述。我们描述了加密机制的设计,并通过对其标准化,加密敏捷性和量子安全性进行标准成熟度进行分析,然后比较它们支持的功能,主要关注演示文稿的不链接性,能够创建预测证明和支持阈值发行的能力。最后,我们根据我们认为最相关的Rust开源实现进行了实验评估。特别是我们评估了使用不同的加密机制构建的凭据和演示的大小以及生成和验证它们所需的时间。我们还强调了在加密机制的实例化中必须考虑的一些权衡。
摘要浮游植物是水生微生物群落的重要组成部分,浮游植物和细菌之间的代谢耦合决定了溶解有机碳 (DOC) 的命运。然而,初级生产力对细菌活动和群落组成的影响仍然很大程度上未知,例如,好氧不产氧光养 (AAP) 细菌利用浮游植物衍生的 DOC 和光作为能量来源。在这里,我们研究了自然淡水群落中初级生产力的减少如何影响细菌群落组成及其活性,主要关注 AAP 细菌。当光合作用因光系统 II 的直接抑制而降低时,细菌呼吸速率最低,而在没有光合作用抑制的环境光条件下细菌呼吸速率最高,这表明它受到碳可用性的限制。然而,细菌对亮氨酸和葡萄糖的吸收率不受影响,这表明当低初级生产力限制 DOC 可用性时,提高细菌生长效率(例如由于光异养)有助于维持整体细菌产量。细菌群落组成与光强度紧密相关,主要是由于光依赖性 AAP 细菌的相对丰度增加。这一观点表明,细菌群落组成的变化不一定反映在细菌生产或生长的变化中,反之亦然。此外,我们首次证明光可以直接影响细菌群落组成,这是浮游植物-细菌相互作用研究中被忽视的一个主题。
摘要:光谱扩散(SD)代表实施固态量子发射器作为无法区分光子来源的实质性障碍。通过在低温温度下对单个胶体量子点进行高分辨率发射光谱,我们证明了量子限制的Stark效应与SD之间的因果关系。通过统计分析发射光子的波长,我们表明,提高过渡能量对应用电场的敏感性会导致光谱波动的扩增。这种关系在定量上适合直接模型,表明在微观尺度上存在随机电场,其标准偏差平均为9 kV/cm。当前方法将使SD在多种类型的量子发射器(例如固态缺陷或有机铅卤化物钙钛矿量子点)中进行研究,对此,光谱不稳定性是量子传感应用的关键障碍。关键字:量子光学元件,胶体量子点,光谱扩散,鲜明效果,激子细胞结构
近年来,卤化物钙钛矿材料已用于制造高性能太阳能电池和发光装置。然而,材料缺陷仍然限制了器件的性能和稳定性。在这里,基于同步加速器的布拉格相干衍射成像用于可视化卤化物钙钛矿微晶体中的纳米级应变场,例如缺陷局部的应变场。尽管 MAPbBr 3 (MA = CH 3 NH 3 + ) 晶体具有很高的光电质量,但其内部存在明显的应变异质性,并且通过分析其局部应变场可以识别出〈100〉和〈110〉刃位错。通过在连续照明下对这些缺陷和应变场进行原位成像,发现了数百纳米范围内剧烈的光诱导位错迁移。此外,通过选择性研究被 X 射线束损坏的晶体,较大的位错密度和增加的纳米级应变与材料降解和使用光致发光显微镜测量评估的显著改变的光电特性相关。这些结果证明了卤化物钙钛矿中扩展缺陷和应变的动态性质,这将对设备性能和操作稳定性产生重要影响。
城市约占全球一次能源消耗的 75%,占全球温室气体 (GHG) 排放的 70%,其中建筑和城市交通是两个主要因素。世界上许多国家都在推动和实施减少温室气体排放的行动。这些行动包括转向电动汽车 (EV) 和可再生能源 (RES),例如太阳能光伏 (PV)。近几十年来,这一转变导致全球电动汽车和光伏的采用量迅速增加。然而,电动汽车和光伏在城市能源系统中的大规模整合带来了新的挑战,例如峰值负荷增加、功率不匹配、组件过载和电压违规。改善电动汽车、光伏和其他负载之间的协同作用可以克服这些挑战。电动汽车的协调充电,或所谓的电动汽车智能充电,可能是改善协同作用的一种有前途的解决方案。通过车辆到电网 (V2G) 方案可以进一步增强协同作用,在这种方案中,电动汽车不仅可以充电,还可以从电池中放电。本博士论文研究了在应用电动汽车智能充电和 V2G 方案的情况下,电动汽车充电与光伏发电之间的协同作用。研究通过对住宅建筑、工作场所、配电网和城市规模的系统级进行模拟研究进行。开发并模拟了智能充电和 V2G 优化模型,旨在降低净负载(负载减去发电量)变化。结果表明,通过提出的智能充电方案可以改善 PV-EV 协同作用。但是,改善程度在很大程度上取决于用户往返于目标充电地点的移动行为。由于在太阳能发电量高时电动汽车占用率低,住宅建筑中的 PV-EV 协同作用有限,但由于同时电动汽车占用率高,因此在工作场所充电站具有很高的潜力。在本论文中提出的案例研究中,发现实施智能充电可以将住宅建筑中的协同作用提高约 9 个百分点,将工作场所中的协同作用提高约 40 个百分点。在城市层面,优化规模和 V2G 在改善城市规模发电负荷协同方面都发挥着重要作用,因为它们可以将负荷匹配率从 33% 提高到 84%。结果还表明,协同作用的改善可提高电网性能和综合光伏-电动汽车电网承载能力。总之,本文表明电动汽车智能充电方案可以改善光伏-电动汽车协同作用,从而提高城市能源系统的性能。
磁性顺序。[7–20]铁磁层寄主非常相关的电子状态,这些状态会产生各种带状结构,包括金属,半导体或绝缘特性。[21–23]中,三锤铬[24-40](CRX 3)显示出由Cr D-Shell Electrons驱动的独特电子特性,这些特性同时促进了Cr-Cr – Cr Ferromagnetic耦合,宽带隙,宽带隙,宽大的界限和强度限制了confitoctonic状态。因此,CRX 3晶体的磁化状态与它们的磁光特性密切相关。fer- romagnetism诱导的滞后光学信号。These results unveiled ferromagnetic coupling between the Cr spins within a monolayer plane with easy axis magnetization ori- ented out-of-plane for CrBr 3 and CrI 3 and in-plane for CrCl 3 , thickness-dependent interplane ferromagnetic and antiferro- magnetic coupling in CrI 3 multilayers as well as light-mediated ferromagnetic response in doped transition metal二分法。[43–45]不幸的是,这些光学方法仅用作磁化探针,而磁性态和光激发之间的相互作用仍未开发。
在这种情况下,电流通过加热元件,加热元件被加热(通过焦耳加热)并因此发光。加热元件发出的光被储能材料吸收,因此在充电过程中储能材料也会升温。由于温度高,储能材料会发光,需要时光可以通过光伏技术将光转换回电能,见图 1。在这种类型的储能系统中,光子用于将储能材料从相当低的温度加热到高温,由于材料的热容量,可以储存大量的能量。因此,这种类型的储能可以具有高能量密度,与锂离子电池相似甚至更高。 [13] 由于储能基于电和光子之间的转换,因此这种类型的电池可以称为“光子电池” [13] 或“光子辉光电池”,因为热的储能材料会发光。这类电池中的储能材料可以由多种不同的材料制成,因此,廉价且丰富的储能材料可以制成非常低成本和大规模的电池。 [13] 例如,不同的氧化物在高温下稳定,如 Al 2 O 3 、 MgO、SiO 2 和 ZrO 2 ,或这些氧化物的混合物,也常用作高温炉中的“燃料砖”,可用作储能材料,而且成本可能非常低。 然而,在将热储能材料发射的辐射转换回电能的过程中,可能会有很大的损失。 在本文中,我们特别研究了使用基于量子点 (QD) 的光伏电池和基于钙钛矿的光伏电池的组合的可能性,以高转换效率将储能材料发射的宽波长范围的光子转换为电能。测量了储能材料两种不同温度下的模拟光谱的光伏响应和电功率输出。能量转换源于
[1] H. Ramp,T。J. Clark,B。D. Hauer,C。Doolin,K。C. Balram,K。Srinivasan和J. P. Davis,《从3D微波炉从3D微波腔到电信的波长转导,使用Piezoeleelectric oporyicalical Crystals,应用物理学Letters Letters Letters Letters 116,(202020202020)。[2] M. Schatzl, F. Hackl, M. Glaser, P. Rauter, M. Brehm, L. Spindlberger, A. Simbula, M. Galli, T. Fromherz, and F. Schäffler, Enhanced Telecom Emission from Single Group- IV Quantum Dots by Precise CMOS-Compatible Positioning in Photonic Crystal Cavities , ACS Photonics 4 , 665 (2017).[3] J. Morville,S。Kassi,M。Chenevier和D. Romanini,快速,低噪声,模式,逐示,通过二极管激光自锁定的自锁,应用物理学B:激光器和光学80、1027(2005)。[4] O. Painter,R。K. Lee,A。Scherer,A。Yariv,J。D. O'Brien,P。D. Dapkus和I. Kim,二维光子波段缺陷模式激光,科学284,1819(1999)。[5]