二硫族化合物 MX 2 (过渡金属 M 和硫族元素 X) 是范德华耦合的层状准二维材料,具有可定制的电子特性,因此在器件、气体传感器和化学过程方面具有重要意义。[1] 其基础是多相和堆叠顺序的存在,以及作为主体材料进行掺杂和插层的能力。[2] 二硫族化合物辉钼矿 (MoS 2 ) 是一种热力学稳定的块体晶体,间接带隙为 1.2 至 1.3 eV。[3–5] 其晶体结构由堆叠的 S–Mo–S 片组成,具有 A–B–A 堆叠的三角棱柱对称性,其中顶部和底部 S 平面中的硫原子占据等效的垂直位置。[3] S–Mo–S 片之间的距离为 6.5 Å。 [6] 从间接带隙块体 2H-MoS 2 到单层,带隙逐渐加宽,单层 MoS 2 的直接带隙达到 1.9 eV。[5] 半导体 2H-MoS 2 相支持通过化学和物理方法诱导的 n 型和 p 型掺杂。[7–11] 据报道,插层、电子、光学和热激发以及机械应变和层取向。[3,12–16] 将 S-Mo-S 层中一个 S 平面的硫原子滑动 1.82 Å 会导致单层内的 ABC 堆积,其中硫原子占据 2H 相六边形的中心,从而产生金属 1T-MoS 2 相。 [3,17] 金属 1T-MoS 2 相可以通过电子注入来稳定,例如用电子显微镜直接注入电子或通过吸附的锂原子提供电子。[12,17–21]
在人们对人为CO 2排放的关注点越来越关注的背景下,住宅建筑部门仍然代表了能源需求的主要贡献者。可再生能源,尤其是光伏(PV)面板的整合正在成为越来越广泛的解决方案,用于减少建筑能源系统的碳足迹(BES)。然而,能源发电及其与典型需求模式的不匹配引起了人们的关注,尤其是从电网管理的角度来看。本文旨在展示光伏面板在设计新的BES时的方向影响,并为最佳PV放置决策过程提供支持。该主题是用混合整数线性优化问题来解决的,其成本是目标,并且PV面板的安装,倾斜和方位角作为主要决策变量。与文献中报道的现有BES优化方法相比,PV面板的贡献是更详细的,包括更准确的太阳辐照模型和面板之间的阴影效果。与现有的PV建模研究相比,PV面板与BES的其余单元之间的相互作用,包括最佳调度的效果。该研究基于来自瑞士西部40座建筑物的住宅区的数据。结果证实了PV面板方位角对BES性能的相关影响。与向东的面板相比,南方方向仍然是最优选的选择,以西方为导向的面板更好地符合需求。除了对单个建筑物的好处外,适当选择的方向可以使网格有益:向西20°旋转面板可以与BES的适当调度相同,将交换的峰值与电力网的峰值降低50%,而总成本仅增加8.3%。包括PV能量产生的更详细的建模表明,假设水平表面可以导致
近年来,可再生能源 (RES) 和电池储能系统 (BESS) 的电网整合正在迅速兴起。将 RES 和 BESS 整合到配电网中可以获得许多经济、技术和环境效益。最佳决策必须考虑两个或多个相互冲突的目标之间的权衡,因此,在本文中,这些效益与由能源价格套利、输电接入费、能源损耗、电能质量(电压调节)和环境排放组成的多目标函数相关。在本文中,假设配电系统运营商 (DSO) 拥有 RES 和 BES 的所有权。通过遗传多目标求解器 (GMOS) 与线性规划相结合,优化 RES 和 BESS 的放置、大小和运行。使用 IEEE 33 节点配电测试系统的仿真结果表明,使用所提出的方法,净效益是合适的,能量损耗减少,电压幅度被推入极限范围内,环境排放减少。 © 2020 能源管理与
物联网 (IoT) 在我们的生活中变得越来越重要。原因之一是技术小型化。它可以降低功耗并在每片芯片面积上放置更多晶体管,从而提高制造成本。这些优势是大规模部署 WSN 的重要标准。然而,随着技术小型化,半导体设备更容易受到辐射和其他故障源的影响,例如温度、频率、电压、光影响等波动。因此,光学(激光)故障注入 (FI) 攻击变得更加可能。光学 FI 攻击属于半侵入式攻击 [1]。这种类型假设攻击者不仅要获得对设备本身的物理访问权限,还要获得其内部结构的物理访问权限。因此,它通常需要对被攻击设备进行一些初步准备,例如对被攻击芯片进行解封装。有关所有其他类型的详细信息,请参阅 [1]。FI 攻击的目标是引发错误,使设备切换到非预期的操作模式。利用设备的这种运行状态并观察其输出,敏感数据可能会泄露。
由于这些引脚作为量子比特[1]使用,因此仅利用光子吸收这一自然现象便可实现光子-电子纠缠测量(③)[2]。 3. 结果与讨论 我们将六个碱基对应的偏振光转移到庞加莱球上并进行断层扫描,得到了所有偏振保真度超过 80% 的结果(图 2)。这种保真度远远超过了经典极限(66%),并证明我们的转移是具有量子特性的量子态转移。传输保真度恶化的原因被认为是氮核自旋的初始化速度不完善。通过改善这一点,有望提高传输保真度。 4. 结论与展望我们成功地实现了光子的偏振态到氮核自旋的量子转移。未来,我们的目标不仅在于提高转录保真度,还在于将量子态转录到钻石中也存在的碳同位素的核自旋中。 5.参考文献 [1] Y. Sekiguchi, H.Kosaka 等,Nature Commun. 7, 11668 (2016)。 [2] H. Kosaka 和 N. Niikura,Phys. Rev. Lett.
量子计算中最重要的、最困难的实验工作之一是实现近乎完美的两量子比特门操作。目前,人们认为大约 10 −4 的门错误概率足够低,可以实现所谓的高效容错量子计算 1、2。囚禁离子串是实现量子计算机最有希望的候选对象之一。用离子量子门实验实现的最低门不真实性仍然在 3% 左右 3。这种几何相位门的主要限制来自自发辐射和磁场涨落 3、4。离子阱量子计算可以用两种替代的量子比特编码来实现:超精细基态量子比特和通过光跃迁连接的量子比特态。对于超精细量子比特,门操作由偶极跃迁介导的拉曼耦合执行。参考文献 3 使用了基于这种超精细跃迁的编码。然而,在这样的设置下,将自发散射降低到所需的容错水平以下是很有挑战性的 5,6 ,因为需要大量的激光功率。最近,针对超精细量子比特 7 ,提出了在四极跃迁中使用拉曼过程。然而,这种策略需要高激光功率来实现短门时间。在这里,我们提出了在光学跃迁上使用 z 型几何相位门来克服 3 实现中存在的一些限制。例如,使用光学四极跃迁可以充分降低自发辐射事件的可能性。同时还表明,磁场不敏感状态可用于 z