为提高微电网灵活资源利用率,满足不同场景下微电网的储能需求,提出一种基于双层优化的微电网集中式共享储能容量优化配置模型。首先,分析弹性微电网中共享储能与可控负荷的响应特性,设计满足多场景调节需求的集中式共享储能运行模式。然后,以集中式共享储能净收益最大为上层,以微电网内负荷支付成本最小为下层,构建双层优化配置模型。进一步采用多目标鲸鱼优化算法对双层优化模型进行求解。结果表明:通过协调微电网内可转移负荷与可削减负荷,提高共享储能利用率,共享储能可以共同满足多场景调节需求。
电子邮件地址:dicky-kin-lok.keung@connect.polyu.hk(K。L. keung),yin-yuen.chan@connect.polyu.hk(y。y。14 Chan),kam.kh.ng@polyu.edu.hk(kam k.h. ng),lunmak@gmail.com(S。L. mak),chli@ieee.org(C。H. Li),1514 Chan),kam.kh.ng@polyu.edu.hk(kam k.h.ng),lunmak@gmail.com(S。L. mak),chli@ieee.org(C。H. Li),15
1 Harish-Chandra 研究所,HBNI,Chhatnag Road,Jhunsi,Allahabad 211 019,印度 2 加尔各答大学应用数学系,92 Acharya Prafulla Chandra Road,加尔各答 700 009,印度 3 耶路撒冷希伯来大学 Racah 物理研究所,耶路撒冷,Ram Givat 1949
在日常的社会和技术实践中摘要耦合创新,以弥合能源贫困,从而提供当地的可持续发展。尽管有关能源获取与可持续发展之间联系的案例研究是深远的,但我们对它们在日常实践(例如烹饪)中的互动知之甚少。专注于获得日常活动的可再生能源,因为烹饪对公平,可及性和繁荣性的能源正义原则具有重大影响。能源正义强调所有人都必须公平地获得能源服务的必要性。同时,应确保这些能源系统不会影响目前和后代的损害。本文采用了基础理论方法来展示诸如烹饪之类的日常实践中的能源过渡如何在泰国农村的社会技术创新中逐渐发展,而在烹饪习惯中可以提供公正的,本地的,可持续的发展。
是温度内存聚合物(TMP),在加热并超过开关温度T SW时能够执行预定的形状变化。t sw被先前的变形步骤中施加的温度T变形确定。[2]在分子水平上,温度记忆效应由两个结构特征实现。开关域正在固定临时形状,并通过熵弹性驱动恢复。交叉链接定义了其原始状态和恢复状态的永久形状。它们将麦克索变形传递到分子水平。对于后者,基于高熔化的微晶的物理交联特别感兴趣,因为所得的材料是可以重新处理的。用于将TMP用作植入物材料,T SW应在人体可耐受的范围内调节。降解性是一种附加功能。这种多功能材料已与基于可结晶的寡聚(ε-caprolactone)(OCL)的多块共聚物实现,这些单元与疏水和高融化和高融化[3] Oligo(ω-pentadecalactone)(optadecalactone)(Opdl)(OPDL)cegments by urthane Junitane Junitane Jun。[2]这些伴侣可以通过酯的水解降解,从而预期晶体单位的降解比无定形的降解较慢。[4,5]因此,可以推测OCL Crystallites执行形状开关的熔化可以增强降解性。因此,温度记忆和降解功能将与可编程开关温度T SW依次耦合。基于这些考虑,对加速条件下的宏观共溶性酯(PDLCL)测试标本进行了定性评估(图S8,支持信息)。的降解性确实在依赖于T变形和降解温度的情况很大。然而,在所使用的高度酸性条件下,质子的催化活性在所有酯键上可能非常相似,因此,需要较少的严格条件才能理解功能相互关系。基于OPDL片段的水解速率[6]和Poly(ε-2酚)(PCL),[7]可以预期,体内PDLCLS降解的模式是从材料中逐渐浸出OCL块。可以在langmuir单层降解实验中模拟这种效果,其中,在脂肪酶酶的前提下,只有OCL段是浸出的
这项研究的目的是调查在不同情况下使用风能生产电力和氢的经济前景。为此,检查了投资者最重要的标准,包括风力发电的电力级别(LCOWE),基于风能的氢(LCOWH),投资回收期和回报率的平均水平成本。将技术和环境影响纳入LCOWE配方中,以获得全面的见解。由于未来的不确定性质,在i)i)安装风能取代燃油电力的情况下研究了与风力涡轮机性能有关的五个降解率和五个可能的货币价值率。结果表明LCOWE在0.0325-0755 $/kWh的范围内,而相应的LCOWH范围为1.375-1.59 $/kg。此外,相关LCOWE和LCOWH的投资回收期分别在风力发电厂的寿命和3.91 - 8.41年期间的范围为2.55 - 9.48年。与上述相关的回报率分别为14.15-23.54%和9.87-21.55%。
paramyxoviruses的磷蛋白基因编码多种蛋白质产物。P,V和W蛋白是通过转录滑动产生的。此过程导致在保守的编辑位点将未模拟的鸟苷核苷插入mRNA中。p蛋白是病毒RNA聚合酶的重要组成部分,并且由大多数帕糖病毒中的基因的直接副本编码。但是,在某些情况下,非必需的V蛋白默认编码,并且必须将鸟氨酸插入mRNA中以编码P。插入的鸟氨酸的数量可以通过病毒之间变化的概率分布来描述。在本文中,我们回顾了这些分布的性质,这些分布可以从mRNA测序数据中推断出来,并重建了paramyxovirus家族中共转录编辑的进化历史。我们的模型表明,在整个家庭的已知历史中,系统已从P默认值转换为V默认模式四次。编辑系统的完全丢失已经发生了两次,V蛋白的典型锌纤维结构域已被删除或再次突变两次,W蛋白已经独立演变了三次新型功能。最后,我们通过病毒RNA聚合酶的滑动来回顾共转录编辑的物理机制。
