索引术语 - 生物信息学,实验验证,基因表达,蛋白质 - 蛋白质相互作用,CRISPR,下一代测序,人工智能,多摩学,计算预测摘要 - 从了解生物学预测和实验验证在促进生物学的策略方面扮演生物信息信息预测和实验验证的作用。生物信息学工具和方法为预测基因功能,蛋白质相互作用和调节网络提供了有力的手段,但是必须通过实验方法来验证这些预测以确保其生物学相关性。本综述探讨了用于实验验证的各种方法和技术,包括基因表达分析,蛋白质 - 蛋白质相互作用验证和途径验证。我们还讨论了将计算预测转化为实验环境的挑战,并强调了生物启发性和实验研究之间协作的重要性。最后,新兴技术,例如CRISPR基因编辑,下一代测序和人工智能,正在塑造生物信息学验证的未来,并推动更准确,更加精确的生物学发现。
众所周知,纠缠在量子场论中广泛存在,具体含义为:每个 Reeh-Schlieder 态都包含任意两个空间分离区域之间的纠缠。这尤其适用于闵可夫斯基时空中无相互作用的标量理论的真空。场论中关于纠缠的讨论主要集中在包含无限多个自由度的子系统上 — — 通常是在紧凑空间区域内支持的场模式。在本文中,我们研究 D + 1 维闵可夫斯基时空中的自由标量理论中由有限个场自由度组成的子系统中的纠缠。关注场的有限个模式是受真实实验有限能力的驱使。我们发现有限维子系统之间的纠缠并不常见,需要仔细选择模式的支持才能出现纠缠。我们还发现纠缠在高维中越来越稀疏。我们得出结论,闵可夫斯基时空中的纠缠并不像通常认为的那么普遍。