耦合振荡器网络中的集群同步是科学界广泛关注的课题,其应用范围从神经网络到社交网络、动物网络和技术系统。这些网络大多是有向的,信息或能量流从给定节点单向传播到其他节点。然而,集群同步方面的大多数工作都集中在无向网络上。这里我们描述了一般有向网络中的集群同步。我们的第一个观察结果是,在有向网络中,节点集群 A 可能单向依赖于另一个集群 B:在这种情况下,只要 B 稳定,A 可能保持同步,但反之则不成立。本文的主要贡献是一种将集群稳定性问题转化为不可约形式的方法。通过这种方式,我们将原始问题分解为最低维的子问题,这使我们能够立即检测到集群之间的相互依赖关系。我们将分析应用于两个感兴趣的例子:一个小提琴演奏者组成的人类网络演奏一首乐曲,音乐家可以激活或停用该乐曲的定向交互;以及具有定向层到层连接的多层神经网络。
种子油可用作食用油,也越来越多地用于工业用途。尽管高油酸种子油更适合工业用途,但大多数种子油富含多不饱和脂肪酸 (PUFA),而油酸等单不饱和脂肪酸 (MUFA) 含量较低。亚麻荠油是一种新兴的油籽作物,种子含油量高,且能抵抗环境压力,其含有 60% 的 PUFA 和 30% 的 MUFA。六倍体亚麻荠携带三种 FAD2 同源物,编码脂肪酸去饱和酶 2 (FAD2),负责从油酸合成亚油酸。在本研究中,为了增加亚麻荠籽油中的 MUFA 含量,我们通过 CRISPR-Cas9 介导的基因编辑生成了 CsFAD2 敲除植物,使用包含 DsRed 作为选择标记的 pRedU6fad2EcCas9 载体、用于驱动覆盖三个 CsFAD2 同源物共同区域的单个向导 RNA (sgRNA) 的 U6 启动子以及用于驱动 Cas9 表达的卵细胞特异性启动子。我们使用来自转化亚麻荠叶片的基因组 DNA 通过 PCR 分析了 CsFAD2 同源物特异性序列。三对 FAD2 同源物的敲除导致矮小的丛生表型,但大大提高了种子中的 MUFA 水平(提高了 80%)。然而,具有两对 CsFAD2 同源物的转化子被敲除,但另一对野生型杂合子显示正常生长,种子 MUFA 产量增加了 60%。这些结果为通过基因组编辑影响多倍体作物生长的基因代谢工程提供了基础。
摘要 - 为了改善MOS晶体管操作特征,例如开关速度和功耗,集成设备的尺寸不断降低,以及其他进步。地理标度的主要缺点之一是名义上相同设备之间阈值电压的变化增加。其起源在于位于氧化物内部和氧化物和半导体之间的界面层的缺陷。同时,缺陷的数量变为接近纳米尺度的设备中的可数量。此外,它们对设备性能的影响显着增加,以一种可以直接从电气测量值观察到来自单个缺陷的电荷过渡。描述由单个缺陷引起的设备的降解,必须研究其对V TH偏移的影响的分布。对于Sion技术,文献中已经报道了单个缺陷的步骤高度的单模式指数分布。但是,我们的结果表明,步进高度更可能是双模式的分布。这些发现对于准确评估分布的尾部至关重要,即缺陷对V th产生巨大影响。这种缺陷会导致设备和电路的直接故障。在这项研究中,创建和分析了单个缺陷效应的统计分布。我们将结果与使用常用的电荷表近似(CSA)计算的值进行了比较,并表明CSA显着低估了研究技术对缺陷的实际影响。最后,我们使用所获得的分布,并使用我们的紧凑型物理建模框架分析了它们对测量应力测量模拟变异性的影响。
工业界广泛使用晶体管仿真工具(如TCAD、SPICE)来模拟单粒子效应(SEE)。然而由于实际设计中物理参数的变化,例如粒子的性质、线性能量传输和电路特性等,都会对最终的模拟精度产生很大的影响,这将大大增加大规模电路晶体管级仿真工作流程的复杂性和成本。因此,提出了一种新的SEE仿真方案,以提供一种快速、经济高效的方法来评估和比较大规模电路在辐射粒子效应下的性能。在本文中,我们结合晶体管和硬件描述语言(HDL)仿真的优点,并提出了准确的SEE数字误差模型,用于大规模电路中的高速误差分析。实验结果表明,所提出的方案能够处理40多种不同电路的SEE模拟,这些电路的尺寸从100个晶体管到100 k个晶体管不等。
此外,当在这些先进节点中考虑单粒子瞬变 (SET) 时,对软错误的敏感性会变得更加糟糕。此类 SET 可能是由高能粒子(如宇宙中子)撞击半导体器件敏感区域引起的,这会影响电路性能。16,17 例如,当粒子撞击硅衬底时,它们会产生二次电子-空穴对,这些电子-空穴对可被周围的 pn 结收集,从而影响器件行为。18,19 发射的阿尔法粒子主要是由于芯片封装中的铀和钍杂质的放射性衰变。当阿尔法粒子穿过半导体器件时,电子会沿着阿尔法粒子的轨迹从晶格位置脱落。20,21 临界电荷是翻转逻辑所需的最小电荷。除了单粒子放电 (SET) 之外,撞击还可能导致单粒子翻转 (SEU),这两者都会妨碍电路的正常运行,并导致软错误。22-25 质子的直接电离可能会导致临界电荷 (Q crit) 较低的器件发生 SEU。26
目前的单细胞 RNA 测序 (RNA-seq) 方法仅提供有关基因表达动态的有限信息。我们在此介绍 RNA 时间戳,这是一种通过利用 RNA 编辑推断 RNA-seq 数据中单个 RNA 年龄的方法。为了引入时间戳,我们用一个报告基序标记 RNA,该基序由多个 MS2 结合位点组成,这些位点会募集与 MS2 衣壳蛋白融合的腺苷脱氨酶 ADAR2。ADAR2 与标记 RNA 结合会导致 A-to-I 编辑随时间累积,从而可以以小时级精度推断 RNA 的年龄。通过结合由同一启动子驱动的多个带时间戳的 RNA 的观察结果,我们可以确定启动子何时处于活跃状态。我们证明该系统可以推断多个过去转录事件的存在和时间。最后,我们应用该方法根据过去转录活动的时间来对单个细胞进行聚类。RNA 时间戳将允许将时间信息纳入 RNA-seq 工作流程。
B化学与化学生物学系B化学与生物工程系,伦斯勒理工学院,Troy,Troy,纽约12180,美国
非挥发性电阻开关,也称为忆阻器 1 效应,即电场改变双端器件的电阻状态,已成为高密度信息存储、计算和可重构系统 2 – 9 开发中的一个重要概念。过去十年,非挥发性电阻开关材料(如金属氧化物和固体电解质)取得了实质性进展。长期以来,人们认为漏电流会阻止在纳米薄绝缘层中观察到这种现象。然而,最近在过渡金属二硫属化物 10, 11 和六方氮化硼 12 夹层结构(也称为原子阻断器)的二维单分子层中发现的非挥发性电阻开关推翻了这种观点,并由于尺寸缩放的好处增加了一个新的材料维度 10, 13。我们在此以单层 MoS 2 为模型系统,阐明了原子片中切换机制的起源。原子成像和光谱表明,金属取代硫空位会导致电阻发生非挥发性变化,这得到了缺陷结构和电子状态计算研究的证实。这些发现提供了对非挥发性切换的原子理解,并开辟了精确缺陷工程的新方向,精确到单个缺陷,朝着实现最小的忆阻器的方向发展,以应用于超密集存储器、神经形态计算和射频通信系统 2、3、11。通过结合扫描隧道显微镜/扫描隧道光谱 (STM/STS) 和局部传输研究,我们观察到硫空位(MoS 2 单层中的主要缺陷)在其天然形式下不起低电阻路径的作用,这与金属氧化物存储器中氧空位的影响形成鲜明对比。 然而,从底部或顶部电极迁移的金属离子(例如金离子)可以取代硫空位,产生导电的局部态密度 (LDOS),从而驱动原子片进入低阻状态。 在反向电场下去除金原子后,缺陷恢复其初始空位结构,系统返回到高阻状态。 这种导电点切换机制类似于在原子级上形成导电桥存储器 14。然而,它本质上是不同的,也是独一无二的,因为单个金属离子填充了晶格中的单个空位,而不是通过高度无序的材料形成金属桥。我们发现硫空位在 2 纳米间距处稳定,导致忆阻器密度约为每 1 个单位
PI3K 抑制可逆转单个细胞而非电场中细胞群的迁移方向 Y Sun, H Yue, C Copos, K Zhu, Y Zhang, Y Sun, X Gao, B Reid, F Lin, M Zhao, A Mogilner 摘要 运动细胞在电场中定向迁移,这一过程称为趋电性。趋电性在伤口愈合、发育、细胞分裂和神经生长中起重要作用。不同类型的细胞在电场中向相反方向迁移,要么向阴极,要么向阳极,同一个细胞可以根据化学条件切换方向。我们之前报告过,单个鱼角质细胞会感知电场并迁移到阴极,而抑制 PI3K 会使单个细胞逆转到阳极。许多生理过程依赖于集体而非个体的细胞迁移,因此我们在此报告了电场中黏性细胞群的定向迁移。任何大小的未抑制细胞群都会移动到阴极,速度随着细胞群大小的增加而降低,方向性增加。令人惊讶的是,大群 PI3K 抑制细胞会向阴极移动,方向与单个细胞向阳极移动的方向相反,而这些小群体不会持续定向。在大群体中,细胞的速度分布不均匀:最快的细胞位于未抑制组的最前面,但位于 PI3K 抑制组的中间和后面。我们的结果与计算模型支持的假设最为一致,即群体内部和边缘的细胞对方向信号的解释不同。也就是说,群体内部的细胞无论其化学状态如何都会被引导到阴极。同时,边缘细胞的行为与单个细胞一样:它们分别在未抑制/PI3K 抑制组中被引导到阴极/阳极。结果,所有细胞都会将未受抑制的群体驱向阴极,但内层细胞和边缘细胞之间的机械拉锯战会将大部分细胞位于内部的大型 PI3K 抑制群体引导至阴极,而小群体则无方向性。运行标题:细胞群体中的双向趋电性意义说明:运动细胞在电场中定向迁移。这种行为——趋电性——在许多生理现象中都很重要。单个鱼角质细胞迁移到阴极,而 PI3K 的抑制会使单个细胞逆转到阳极。未受抑制的细胞群移动到阴极。令人惊讶的是,大量的 PI3K 抑制细胞也会移动到阴极,方向与单个细胞相反。最快的细胞位于未受抑制组的最前面,但在 PI3K 抑制组的中间和后方。我们假设内细胞和边缘细胞对方向信号的解释不同,边缘细胞和内细胞之间的拉锯战指挥着细胞群。这些结果揭示了集体细胞迁移的一般原理。
充血反应 1,8,10,12,13,自从通过光谱学发现以来,引起了人们的浓厚兴趣 1,6,8–18。19 两种无标记成像技术,功能性磁共振成像 6,10,15–17 (fMRI) 和宽视野(反射模式)光学显微镜,1,11–14 都为理解初始下降做出了宝贵贡献。 fMRI 是目前神经成像的主流,它通过检测顺磁性脱氧血红蛋白,非侵入性地获得大脑皮层范围内的大脑功能映射。4,10 即使是用于小动物成像的小口径形式,fMRI 也缺乏空间分辨率来辨别直径 < 50 μ m 的脑微血管的动态,20 初始下降被认为是起源于此处。 8、10 理论上,宽视野光学显微镜具有足够的空间分辨率,但在分辨深层血管时,往返光学散射严重,对微小吸收变化的灵敏度低;21 它也缺乏深度分辨率。2 因此,初始倾角现象仍未得到充分探索。6、12、15