全球 ATM 运行概念是由国际民航组织制定的,目的是在适应日益增长的交通量的同时,实现安全、可持续和环保的空中交通运行。ENRI 公布了其长期研究愿景,并一直致力于研究,以及为实现全球 ATM 运行概念 (GATMOC) 而在全球范围内开发和传播成果。长期研究愿景需要根据社会环境的变化和新开发技术的引入进行审查。因此,ENRI 定期审查其长期研究愿景,考虑与 CARATS * 和 GANP ** 等其他空中交通系统长期愿景的协调,并于 2019 年发布了最新版本。未来将实现基于轨迹的运行 (TBO),其中飞机轨迹会提前调整和确定,飞机将在指定时间沿着轨迹飞行。灵活的空中交通管理对于应对各种类型、不同性能和用途的飞机的预期增长至关重要。新的研究愿景将我们未来几十年的研究主题解释为路线图,其中主题大致分为四个研究领域:“通过提高运营安全性和可靠性有效利用空域”、“通过空域运营效率有效利用空域”、“优化机场运营”和“改善空中交通系统的基础技术”,重点是提高研究潜力并持续长期为社会做出贡献。ENRI 将根据这一长期愿景开展其研究和开发活动。
全球 ATM 运行概念是由国际民航组织制定的,旨在实现安全、可持续和环保的空中交通运行,同时适应不断增加的交通量。ENRI 公布了其长期研究愿景,并一直致力于研究,以及在全球范围内开发和传播成果,以实现全球 ATM 运行概念 (GATMOC)。长期研究愿景需要根据社会环境的变化和新开发技术的引入进行审查。因此,ENRI 定期审查其长期研究愿景,考虑与 CARATS * 和 GANP ** 等其他空中交通系统长期愿景的协调,并于 2019 年发布了最新版本。未来将实现基于轨迹的运行 (TBO),其中飞机轨迹会提前调整和确定,飞机将在指定时间沿轨迹飞行。灵活的空中交通管理对于应对具有不同性能和用途的各种类型飞机的预期增加至关重要。新的研究愿景将未来几十年的研究课题以路线图的形式阐述,其中研究课题大致分为四个研究领域:“通过提高运行安全性和可靠性有效利用空域”、“通过空域运行效率有效利用空域”、“优化机场运营”和“改善空中交通系统的基础技术”,重点是提高研究潜力并持续长期为社会做出贡献。ENRI 将根据这一长期愿景开展研究和开发活动。
虽然实用或通用量子计算机远离商业用例和广泛部署,技术进步,投资量以及围绕量子计算技术的工业和社会炒作,但从未如此强大。(国家科学,工程和医学学院,2019年)(布鲁克斯,2023年)量子计算机已被宣告为快速有效地模拟,预屏幕预播和开发新的功能材料和药物的工具,以解决许多条件,以解决众多复杂问题,以及在物流和运输中,包括物流和运输,决策,决策和成果,并进行了决策,并进行了成果,并获得了质量,并获得了努力,并获得了精力,并获得了良好的质量,并获得了良好的质量和财务,并获得了良好的问题。(国家科学,工程和医学学院,2019年)(Brooks,2023)量子计算机甚至被提议作为回答某些气候变化问题的有力工具。(O'Brien,2019年)(Bobier,Gerbert,Burchardt和Gourévitch,2020年)量子退火器,一种部署量子退火效果的量子计算机已经显示了对古典机器的“量子优势”,使它们可以快速分解复杂的优化问题(Daley等,diaiy,et al。 2021)。
与神经元网络的通信是通往大脑更高世界的大门,而神经电子学可能就是打开这扇大门的钥匙。顾名思义,新术语“神经电子学”被提出来描述与神经元网络无缝接口的电子设备,以实现畅通无阻的双相信息交换。从结构上讲,神经电子器件与脑组织一样柔软,可以最大限度地避免机械失配引起的炎症和损伤。它们与主要侧重于解码和编码电生理序列(例如,单元动作电位和局部场电位)的传统脑机接口技术本质上的区别在于,它们能够解读和传输以复杂的分子结构编译的神经信息
主题 - 纳米和高级材料,探测器,传感器和表面(此主题还包括可穿戴设备,能源,可持续性,减少二氧化碳和健康应用的纳米和高性能材料。检测器,生物传感器,表面功能化和功能涂层也被解决。)
植物压力的研究核心科学大气压力单元植物光适应研究小组1组环境反应系统2功能性生物分子发现组组3土壤应力单位植物应力生理4植物分子生理学组分子生理学5生物应力单元组的植物 - 微生物相互作用6组植物 - 内部相互作用7植物免疫设计组8植物环境微生物学9大麦和野生植物资源中心遗传资源遗传资源单位遗传资源组基因组多样性10应用基因组学单位遗传资源和功能组11综合基因组育种12
当研究人员收集单细胞数据并将其细化为细胞图谱时,一项关键任务是对每种细胞类型进行表征和标记或注释。“这通常是一项非常耗时、繁重的任务,只有少数生物学专家才能完成,”计算生物学家、麻省理工学院和哈佛大学布罗德研究所 HCA 细胞注释平台负责人 Evan Biederstedt 说。研究人员已经开发了几种自动标记细胞的程序,但这些工具并不总是能得出相同的答案。popV 就是个例子。它的功能简单但功能强大:它将八种自动细胞注释工具整合到一个平台中,并且可以在有更多工具可用时添加 1 。“这是一个加速工具,”联合开发者、加州大学伯克利分校的计算生物学家 Can Ergen 说。拥有新鲜生成的单细胞 RNA 测序数据的研究人员可以将其加载到 popV 中,八种方法中的每一种都会对细胞身份进行“投票”——因此该工具的全名是 popular Vote。对于任何给定的细胞,用户可以检查所有八种注释是否一致,或者对可能的身份是否存在分歧投票。如果这些方法对某种细胞类型的判定一致,研究人员就可以对其身份充满信心;如果存在分歧,可能就没那么自信了。为了量化这一点,popV 提供了“不确定性分数”,以便用户知道在其鉴定中可以给予多大信任度。“这真的很酷,”Regev 说。PopV 使用来自 Tabula Sapiens 的数据进行训练,Tabula Sapiens 是一张人类细胞图谱,涵盖了近 500,000 个细胞,代表了 15 个人的 24 个器官。研究人员随后在来自人类肺细胞图谱 2 的数据库上对其进行了测试;根据最终论文,popV 的预测与大多数注释一致,比任何单个计算注释器都更准确。Biederstedt 计划将 popV 整合到 HCA 细胞注释平台用户界面中,科学家将能够在对细胞类型进行分类时查看 popV 的预测。“它确实让社区更接近自动细胞注释的梦想,并将极大地帮助研究人员,”他说。一旦研究人员发现了一种有趣的细胞类型或状态,他们可能会想知道它还会出现在哪里。Regev 和她的同事开发了 SCimilarity 来回答这个问题。该软件可以获取感兴趣的细胞概况