简介:超高能(UHE;≳ 10 16 eV)天体物理中微子具有巨大的发现潜力。它们将探测超高能宇宙射线的加速器,超高能宇宙射线的探测能量最高可达 ∼ 10 20 eV。与在宇宙微波背景上向下散射并在磁场中偏转的宇宙射线不同,探测到的中微子将指向其来源。超高能中微子-核子相互作用探测对撞机能量尺度以上的质心能量,从而可以进行灵敏的新物理测试。为了充分利用超高能中微子的科学潜力,我们最终需要一个具有足够曝光度的天文台,即使在悲观的通量情景下也能收集高统计数据。当超高能中微子在物质中相互作用时,它们会产生相对论性粒子级联,以及由于相对论性粒子能量损失而产生的非相对论性电子和原子核尾迹。冰中的时间积分级联轮廓是一个长度约 10 米、半径约 0.1 米的椭圆体。几乎所有的主要相互作用能量都用于介质的电离。来自单个级联电子和正电子的非相干光学切伦科夫辐射可以在 TeV–PeV 探测器(如 IceCube [1])和类似实验 [2–4] 中探测到。然而,由于中微子谱急剧下降,拟议的后继者 IceCube-Gen2 [5] 的光学探测率太小,不足以成为合适的超高能天文台。已经提出并实施了几种更有效的技术来探测来自超高能中微子的级联。首先,级联中净电荷不对称产生的相干射频辐射(阿斯卡里安效应 [6])已在实验室中观测到 [7],并且是过去 [8]、现在 [9–11] 和拟议 [12, 13] 实验的焦点。由于冰中无线电的透明性 [16–20],无线电方法(详见参考文献 [14, 15])可以比光学探测器更稀疏地测量大体积 [16–20],从而使得大型探测器的建造更具成本效益。其次,τ 中微子与地球相互作用,可以产生 τ 轻子(携带大部分原始 ν τ 能量),该轻子离开地球并在空气中衰变,产生 cas-
1. 引言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 5.1. 一般考虑. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
1. 引言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 5.1. 一般考虑. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
2025年1月31日,在宇宙学,天体物理学和粒子物理学会议期间,SRM科学技术研究所,Kattankulathur。主题:赋予妇女的能力:2025年1月31日,包括包容性会议环境的最佳实践在宇宙学,天体物理学和粒子物理学会议上邀请演讲,SRM科学技术研究所,Kattankulathur。谈话:中微子质量,混合和CP违规。2025年1月2日邀请了在Iiser Pune的演讲。谈话:粒子物理的中微子前沿。2024年11月13日,在Bhubaneswar的IOP Golden Jubilee年轻女科学家大会(IOP)邀请演讲。谈话:中微子质量,混合和CP违规。2024年8月23日在IIT Kanpur的物理座谈会。谈话:粒子物理的中微子前沿。2024年8月9日,在布巴内斯瓦尔(Bhubaneswar)物理学研究所(IOP)的暗物质和Astroparticle物理学研讨会上邀请演讲。谈话:超高的深色物质是超高能宇宙射线的起源。2024年8月5日在布巴内斯瓦尔(IOP)邀请演讲。谈话:单位三角形,中微子混合和违反CP。2024年6月13日,被邀请担任Sreerup Raychaudhuri教授的Lie组和尺度理论的主席 - II,作为Harish -Chandra讲座系列的一部分,由IISER PUNE和BHASKARACHARACHARACHARACHARAYA PRATISHTHANA(BP)共同组织。
深地下中微子实验(Dune)的主要科学目标之一是检测和测量来自银河系核心偏曲超新星的中微子通量。这些中微子提供了研究大型恒星寿命演变的机会,并揭示了有关电磁谱观测到的核心爆发结构的信息。由于这些事件的稀有性,至关重要的是,沙丘能够在发生时检测超新星中微子相互作用。但是,这将需要筛选大量数据,激发触发算法的开发以识别重要事件并丢弃无关数据。机器学习提供了一种潜在的方法来构建此触发因素。该项目在LARTPC检测器中生成了ADC和地面真相图像,用于用于机器学习,并使用它们来训练稀疏的卷积神经网络(CNN)。将检查基于相互作用类型的像素分类任务时,该模型的性能将被检查。该项目发现,稀疏的CNN方法具有高准确性的像素分类,这意味着它可能与开发Supernova Neutminino触发的Dune FAR检测器高度相关。
在 NIPNE-HH 布哈拉斯特运行的 WILLI 电磁光谱仪装置已被改造,用于测量大气中 μ 子通量的电荷比。实验方法基于对负 μ 子在物质中停止时的有效寿命与正 μ 子的寿命相比的减少的观察。该方法给出了准确的结果,避免了磁谱仪的困难和系统误差,并且详细研究了技术程序,并通过开发紧凑而灵活的测量设备进行了演示。铝被用作最佳吸收材料,这是最大限度地缩短因核俘获而导致的寿命和通过延迟电子与停止 μ 子结合观察到的停止 μ 子率的折衷。本研究主要针对μ子的一个能量范围,为讨论所谓的大气中微子问题和研究大气中微子和反中微子通量提供了重要的信息。两个测量周期得到的结果是:
●研究领域中微子物理学→双β衰变实验;中微子振荡,反应堆抗神经纤维。塑料闪烁体→研发以及塑料闪烁体在不同实验中的应用。在未来CBM(压缩的重型物质)实验中前旁观者检测器的hadronic Physics→R&D(Fair,GSI Darmstadt,德国)。在LSM(法国Modane)的地下实验的新技术→敏感的ra探测器;无ra无ISO5清洁室;反雷登设施。●合作
中微子通量的标准太阳模型预测与观察到的速率已有三十多年(Bahcall 1989)之间存在差异。首先提出了低Z模型,以减少预测的太阳中微子通量(Bahcall&Ulrich 1971)。与标准模型相反,低Z模型考虑了太阳化学分层的可能性。一颗星星可能在Hayashi阶段演变后捕获一些星际物质(Joss 1974)。对于在其植物圈以下的对流区域的太阳情况下,降落物质将被混合到整个对流区。由于星际尘埃的金属丰度远高于太阳能材料的金属丰度,因此太阳能对流区将通过重元素增强。低Z模型可以提供相当低的中微子通量,但通常会导致对流区和非常低的初始氦气丰度。此外,太阳能内部的Cal占P模式振荡频率和声速与观察值不符(Christensen-Dalsgaard,Gough和Morgan 1979; Christensen-Dalsendalsgaard&Gough 1980; Bahcall&Ulrich&Ulrich 1988)。因此,近年来,低Z模型被认为是不现实的,并且越来越多的作者更喜欢具有元素扩散的标准太阳能模型(Bahcall&Pinneneult 1992; Bahcall,Pinsonneault,&Wasserserburg 1995; Bahcall,Bahcall,Basu和Pinsonneault 1998)。然而,许多证据证实,即使没有以前的低Z模型所需的太多,太阳包膜已受到行星际材料的污染。因此,我们使用更新的输入物理学研究了包络金属的中等增强,并将我们的注意力集中在太阳中微子问题上,而是太阳的结构和P模式振荡。