中微子真实本质的实验探索可以追溯到核物理学和粒子物理学的早期,现在正利用高精度和大规模的实验、机器和探测器。对假设的难以置信的罕见事件——原子核的无中微子双重贝塔衰变——的观察将表明中微子是其自身的反粒子,并有助于回答为什么宇宙中的物质多于反物质的基本问题。由于来自探测器的巧合但罕见的背景(即非信号)数据,当前和计划中的实验只能探索无中微子双重贝塔衰变的某些理论。要完全解决原子核是否能发生这种尚未检测到的反应,需要在探测器技术上取得新的突破,通过消除背景事件,达到难以捉摸的“正常有序”无中微子双重贝塔衰变模式。该研究项目将把核物理研发领域的最新进展统一并整合到一种新型探测器中,该探测器能够展示无背景无中微子双贝塔衰变搜索。值得注意的是,这将包括能够在单离子水平上检测氙气双贝塔衰变产生的钡++离子的传感器。此外,该探测器将综合直接紫外光收集和快速光学相机,以实现无中微子双贝塔衰变事件的高分辨率 3D 成像。实现无背景无中微子双贝塔衰变搜索将使科学办公室对无中微子双贝塔衰变的高优先级搜索达到前所未有的灵敏度水平。
在极端天体物理环境中的摘要,例如核心偏离的超新星和二进制中子星星合并,中微子在推动各种动态和微物理现象中起着重要作用,例如,baryononic matter toper fureflows,繁重的元素的合成以及su-pernova爆炸式爆炸机械。中微子与物质在这些环境中的相互作用是特定于风味的,这对于不阐明中微子的风味演变至关重要。在这些环境中的风味发展可能是一种高度不平凡的概率,这要归功于风味空间中的多种集体效应,这是由于中微子中微子中微子(ν-ν)相互作用在高中微子密度的地区引起的。在重要的ν-ν-ν相互作用的影响下,经历风味振荡的中微子晶状体在某种程度上类似于与自身和外部磁场之间具有长距离相互作用的耦合旋转系统(在中间上间上间上间上间的势头中“远距离”)。结果,要考虑这些相互作用是否会导致相互作用中微子之间的显着量子相关,以及这些相关性是否对整体的风味演变产生任何后果。特别是,人们可能会寻求利用概念和工具从量子信息科学和量子计算来加深我们对这些现象的理解。在本文中,我们试图总结该领域的最新工作。此外,我们还考虑了复杂的初始状态,在三种味道环境中也提供了一些新的结果。
nusd:中微子分割的检测器是基于GEANT4的用户应用程序,它在不同国际合作开发的各种分段闪烁检测器中模拟逆β衰减事件。该模拟框架结合了高能量物理社区开发和使用的跨程序和库(包括Geant4,root和clhep)的组合。它将使中微子物理社区能够使用单个程序模拟和研究不同检测器概念中的中微子相互作用。除了分段探测器中的中微子模拟外,该程序还可以用于使用闪烁探测器的各种研究项目,用于不同的物理应用。
费米实验室的使命是成为粒子物理发现的前沿实验室。该加速器综合设施为宇宙基本性质的研究提供了动力,是世界上唯一一个既能为科学生产低能和高能中微子束,又能进行精密科学实验的加速器综合设施。长基线中微子设施 (LBNF) 和深层地下中微子实验 (DUNE) 的建设,以及质子改进计划 II (PIP-II) 项目实现的世界上最强的中微子束,将成为美国能源部国家实验室的第一个国际大科学项目。费米实验室通过其在中微子、对撞机、精密和宇宙科学方面的实验和项目,将美国研究人员整合到全球粒子物理事业中。该实验室的科学研发推动了加速器、探测器、计算和量子技术在科学和社会中的应用。
在2019年底,构成星座猎户座左肩的明星Betelgeuse开始显着昏暗,促使人们对即将来临的超新星的猜测。如果爆炸爆炸,这个宇宙邻居(仅是地球上的700光年)将在白天几周内可见。然而,爆炸能量的99%不是通过光来携带的,而是通过中微子,很少与其他物质相互作用的幽灵样颗粒。如果Betelgeuse很快就会走了超新星,发现中微子将“显着增强我们对超新星核心内部发生的事情的理解,”费米拉布理论家萨姆·麦克德莫特(Sam McDermott)说。它将提供一个独特的机会来研究中微子本身的特性。由费米拉布(Fermilab)主持并计划在2020年代后期开始运营的深层中微子实验正在牢记这些目标。
中微子是一种亚原子粒子,是粒子王国中最难捉摸的粒子之一。费米实验室是美国研究中微子的顶级实验室,并主持深层地下中微子实验,这是一项旨在揭开这些粒子之谜的国际旗舰实验,汇集了来自 30 多个国家的科学家。在费米实验室,研究人员正在使用人工智能并开发最先进的方法来检测和研究自然界最神秘的粒子,包括加快实验工作流程和增强事件重建。
台山反中微子观测站(TAO,又称JUNO-TAO)是江门地下中微子观测站(JUNO)的卫星实验。一台吨级液体闪烁体探测器将放置在距离台山核电站核心约 30 米的地方。反应堆反中微子谱将以亚百分能量分辨率进行测量,为未来的反应堆中微子实验提供参考谱,并为测试核数据库提供基准测量。一个装有 2.8 吨钆掺杂液体闪烁体的球形丙烯酸容器将通过 10 m 2 硅光电倍增管 (SiPM) 进行观察,其光子探测效率 > 50%,几乎完全覆盖。光电子产量约为每兆电子伏 4500 个,比任何现有的大型液体闪烁体探测器都要高一个数量级。该探测器在 -50 ◦ C 下运行,以将 SiPM 的暗噪声降低到可接受的水平。该探测器每天将测量约 2000 个反应堆反中微子,并设计为能够很好地屏蔽宇宙背景和环境放射性,使背景信号比约为 10%。该实验预计将于 2022 年开始运行。
粒子物理学有着宏伟的目标,即揭示现实的最基本成分,并破译这些成分相互作用的规则。这些规则包括量子力学,而基本成分似乎是量子实体。例如,在标准模型中,我们讨论相对论量子场的激发,这些场以固定的量子数(如质量、自旋和各种电荷)为特征。此外,在粒子物理实验中,我们有能力产生某些量子数的量子叠加态。例如,费米实验室各种光束中由介子衰变产生的(μ 子)中微子处于(至少)三个不同中微子质量本征态的量子叠加态中,并且该叠加态会随着通常的量子幺正时间演化而变化,由算符 exp (− 𝑖𝐻𝑡 ) 表示,其中 𝐻 是中微子哈密顿量。因此,中微子振荡实验是研究宏观尺度上量子信息时间演化的一个例子。
粒子物理学有着宏伟的目标,即揭示现实的最基本成分,并破译这些成分相互作用的规则。这些规则包括量子力学,而基本成分似乎是量子实体。例如,在标准模型中,我们讨论相对论量子场的激发,这些量子场以固定的量子数(如质量、自旋和各种电荷)为特征。此外,在粒子物理实验中,我们有能力产生某些量子数的量子叠加态。例如,费米实验室各种光束中由介子衰变产生的(μ 子)中微子处于(至少)三个不同中微子质量本征态的量子叠加态中,并且该叠加态会随着通常的量子幺正时间演化而变化,由算符 exp (− 𝑖𝐻𝑡 ) 表示,其中 𝐻 是中微子哈密顿量。因此,中微子振荡实验是研究宏观尺度上量子信息时间演化的一个例子。