建议2作为新实验构建的最高优先事项,我们建议美国领导一个国际财团,该联盟将进行中微子的双重β衰减运动,其中包括使用不同的同位素和互补技术的迅速建设吨位尺度实验
HE 中微子天文学望远镜要求将光学传感器部署在大量水体上方(因为中微子相互作用率低)和很深的地方(因为宇宙射线介子背景)。这必然会导致光电倍增管阵列,每个光电倍增管都位于玻璃压力球内,并且距离组合信号受到高水平触发的位置很远。虽然所有 HE ν 望远镜都具有这两个共同特征,但信号处理电子设备的设计解决方案可能会有很大差异,具体取决于介质是水还是冰,以及特定站点的物流。本文介绍了正在阿蒙森-斯科特南极站建造的望远镜 IceCube 的电子设备。完工后,IceCube 将由至少 70 根弦组成,每根弦有 60 个光学模块。大约一立方公里的冰将在 1450 米至 2450 米的深度之间安装仪器(图 1)。在 2004-2005 年南半球夏季,第一条 IceCube 线路与四个站点一起部署
探测器成功地放置在海平面以下1,600米处的指定地点,这标志着由中国海洋大学资助的Sea Star计划下的原型阵列开发的关键技术步骤。该项目将为高能水下中微子望远镜提供技术评估,这是IHEP提出的一种大规模的科学仪器,其预期的体积约为30立方公里。
中微子物理学家部署了特殊的 AI 算法来增强快速图像分析。粒子物理学家将 AI 应用于自动驾驶汽车,以改进其图像分类系统,但这些工具在没有有用数据的像素上停留的时间太长了。为了应对这一挑战,他们开发了一种新的 AI 技术,通过专注于数据丰富的像素而忽略空像素,可以实现更快速的图像处理。
摘要:使用三角大学核实验室中的中子束5至27 MeV,使用微琴探测器测量塑料闪烁体EJ-260的非线性能量响应。第一阶和二阶Birks的常数是从数据中提取的,发现为𝑘=(8。70±0。93)×10 - 3 g / cm 2 / mev和𝑘=(1。< / div>42±1。 00)×10-5(g / cm 2 / meV)2。 该结果涵盖了一个独特的能量范围,该能量范围与反应器反向β衰变检测器中的快速中子背景具有直接相关性。 这些测量结果将改善塑料闪烁体检测器的能量非线性建模。 特别是,更新的能量响应模型将改善基于Chandler反应器中微子检测器技术的检测器的快速中子建模。42±1。00)×10-5(g / cm 2 / meV)2。该结果涵盖了一个独特的能量范围,该能量范围与反应器反向β衰变检测器中的快速中子背景具有直接相关性。这些测量结果将改善塑料闪烁体检测器的能量非线性建模。,更新的能量响应模型将改善基于Chandler反应器中微子检测器技术的检测器的快速中子建模。
粒子宇宙学的巨大成功是与当前宇宙微波背景(CMB)温度t¼2的大爆炸宇宙学的一致性。7 k,测量值ωb,标准模型(SM)中三个光中微子的存在,以及测得的氦4(4 He)和氘(d)的原始量。这些元素的形成对物理敏感,温度范围为100 keV至〜10 meV,有时从几秒钟到宇宙寿命的几分钟。原始4和D的测量达到了精度百分比,因此我们能够询问有关该时代宇宙特性并获得定量答案的问题。这样一个问题涉及宇宙“黑暗辐射”的性质。现在是通过大爆炸核合成(BBN)和CMB建立的,即早期宇宙能量密度的相当一部分是黑暗辐射的形式。SM将这种辐射解释为SM中微子,它与光子浴中的热接触直至几MeV接近温度。有重要的理由来测试这种解释。例如,在早期与SM的热接触中的其他(近)无质量状态可能会增加此深色辐射。在Lambda冷暗物质中,BBN,CMB和BARYON声学振荡(BAO)的当前95%约束。4(BBN),△n eff≲0。33(CMBþBAO用于λCDMþNEFF),
报道了第一个FASER搜索对光子腐烂到一对光子的光线颗粒的搜索。搜索使用收集到的2022和2023 LHC质子 - 蛋白质碰撞数据√s= 13。6 TEV,对应于57的综合光度。7 fb -1。具有轴状颗粒(Alps)的模型主要耦合到弱量表玻色子,是针对弱量表的,探测了50至500 MEV的质量范围,并与标准模型粒子G AW W,G AW W,10-5和10-3 GEV-1。信号事件的特征是电磁热量表中的高能量沉积物,否决闪烁体中没有信号。与背景期望为0相比,观察到一个事件。42±0。 38事件,完全由中微子相互作用主导。 在阿尔卑斯山上的世界领先约束获得了高达300 MeV的质量,并在10-4 GEV-1附近获得了耦合,并测试了先前未开发的参数空间区域。42±0。38事件,完全由中微子相互作用主导。在阿尔卑斯山上的世界领先约束获得了高达300 MeV的质量,并在10-4 GEV-1附近获得了耦合,并测试了先前未开发的参数空间区域。
摘要Dune FAR检测器旨在检测由中微子与大型液体氩靶的相互作用的带电产物产生的光子和电子。第一个沙丘远检测器(FD1)的光子检测系统(PDS)由6000个光子检测单元组成,称为X-arapuca。在LAR中释放粒子能量产生的及时光脉冲的检测将补充并增强沙丘壁球时间投影室。它将改善标记的非光束事件,并在低能启用超新星中微子的触发和量热法。X- Arapuca是几个组件的组件。其Photon检测效率(PDE)取决于组件的设计,单个组件的等级和耦合。X-arapuca PDE是PDS敏感性的主要参数之一,进而决定了沙丘对在银河系中检测核心偏曲超新星和核子衰减搜索的敏感性。在这项工作中,我们介绍了FD1 X-Arapuca基线设计的绝对PDE的最终评估,该设计在两个具有独立方法和设置的实验室中测量。在Palomares中报道了初步结果(Jinst 18(02):C02064,https://doi.org/10.1088/1748-0221/18/18/02/C02064,2023)。这些X-Arapuca设备的一百六十个单元已在CERN NETRINO平台的NP04设施中部署了1:20秤
SNOLAB 是一所国际一流的地下物理研究设施,其天体粒子物理和地下科学项目正在不断扩展。该设施位于安大略省萨德伯里附近的 Vale Creighton 矿场地下 2 公里处,设有空调的 2000 级洁净室,并配备了一套地面设施和实验室。SNOLAB 目前正在为下一代实验做准备,重点是中微子研究、银河系暗物质搜索、量子技术和地下科学。
