摘要 — 电动飞机的电力推进驱动器需要轻便高效的电源转换器。此外,驱动器的模块化构造方法可确保降低成本、提高可靠性和易于维护。本文首次报道了额定功率为 100 kW、1 kV 直流链路的模块化直流-交流三级 T 型单相桥臂电力电子构建块 (PEBB) 的设计和制造过程。由硅 IGBT 和碳化硅 MOSFET 组成的混合开关被用作有源器件,以实现高功率下的高开关频率。拓扑和半导体选择基于基于模型的设计工具,以实现高转换效率和轻量化。由于没有商用三级 T 型功率模块,设计了基于 PCB 和现成分立半导体的大功率开关用于中性点钳位。此外,还设计了一种非平凡的铝基多层层压母线,以促进所选有源器件和电容器组的低电感互连。测量的电感表明母线中的两个电流换向回路对称,值在 28 - 29 nH 范围内。估计该块的比功率和体积功率密度分别为 27.7 kW/kg 和 308.61 W/in3。证明了该块在 48 kVA 下的连续运行。测量结果显示该区块的效率为 98.2%。
I. 引言 电力电子逆变器在各种工业驱动应用中越来越受欢迎。从技术角度来看,使用电子功率转换器引入了新的挑战性问题,例如拓扑复杂性、额外的功率损耗和电磁干扰 (EMI),从而降低了系统的整体服务质量、效率和稳定性。为了克服这些缺点,研究人员提出了新的控制拓扑或修改现有的拓扑,以提高逆变器端子的可用能量。其中,正弦脉冲宽度调制 (SPWM) 级联多级替代了当前的逆变器拓扑。级联功率设备,从而克服了它们的电压限制并减少了谐波。MLC 拓扑主要有三种:中性点钳位、级联 H 桥和飞跨电容器 (FC)。通常,需要串联连接四到十二个逆变器才能达到所需的输出电压。MLI 设计的一个主要问题是其控制的复杂性。在过去的十五年里,模糊逻辑 (FL) 被成功采用。它主要用于逆变器控制和调制技术,主要用于直流/交流转换器领域。级联功率器件,从而克服了它们的电压限制并降低了谐波。本文提出了基于模糊的级联多电平逆变器,以实现低谐波失真、降低功率损耗、成本效益高、波形清晰以及电压稳定性。使用 MATLAB/SIMULINK 对所提出的方法进行了仿真。
1. M.Bourogaoui、H. Ben Attia Sethom、I. Slama Belkhodja,“可调速驱动器中的速度/位置传感器容错控制 - 综述”,ISA Transactions,Elsevier,第 64 卷,第 269-284 页,2016 年 9 月。2. M.Dagbagi、A. Hemdani、L. Idkhajine、MW Naouar、E. Monmasson 和 I. Slama Belkhodja,“在低成本 FPGA 中实现的基于 ADC 的嵌入式实时电源转换器模拟器 - 应用于并网电压源整流器的容错控制”,IEEE Transactions on Industrial Electronics,第 63 卷,第 7 期,第 825-865 页,2016 年 9 月。 2,第 1179 – 1190 页,2016 年。3. A.Damdoum、I. Slama-Belkhodja、M. Pietrzak-David 和 M. Debbou,“电网故障下双馈感应机抽水蓄能系统的低电压穿越策略”,Elsevier,可再生能源,第 95 卷,第 248-262 页,2016 年 9 月。4. M.Merai、MW Naouar、I. Slama-Belkhodja 和 E. Monmasson,“基于 FPGA 的三相并网转换器容错空间矢量滞后电流控制”,IEEE Trans. Indus. Electron. , 第 63 卷,第 11 期,第 7008-7017 页,2016 年。 5. H.Ben Abdelghani、A. Bennani Ben Abdelghani、F. Richardeau、J.-M. Blaquière、F. Mosser 和 I. Slama-Belkhodja,“三电平混合中性点钳位飞行电容转换器的容错拓扑和控制”,IET 电力电子杂志,第 9 卷,第 12 期,第 2350 页,2016 年。 6. M.Ben Saïd-Romdhane、MW Naouar、I. Slama-Belkhodja 和 E. Monmasson,“基于 LCL 滤波器的并网转换器的稳健有源阻尼方法”IEEE 电力电子学报,第 32 卷,第 9 期,第 7008-7017 页,2016 年。 6739 - 6750,2017 7. F.Mouelhi、H. Ben Attia-Sethom、I. Slama-Belkhodja、L. Miègeville 和 P. Guérin,“正常和受扰运行条件下住宅负载的快速事件检测算法”,欧洲电气工程杂志,第 18 卷,第 1-2 期,第 95-116 页,2016 年。 8. I.Ouerdani、H. Ben Abdelghani、A. Bennani Ben Abdelghani、D. Montesinos-Miracle 和 I. Slama-Belkhodja,“具有恒定开关频率的 3 级 NPC 转换器的空间矢量调制技术”,电力电子进展,第 2016 卷,文章 ID 6478751,13 页。 9. H.Ben Abdelghani、A. Bennani Ben Abdelghani、F. Richardeau、J.-M。 Blaquière、F. Mosser、I. Slama-Belkhodja,“三电平混合中性点钳位飞行电容转换器的容错拓扑和控制”,IET 电力电子学杂志,第 9 卷,第 12 期,第 2350 页 10. I.Ouerdani、A.Ben Abdelghani-Bennani、I. Slama-Belkhodja,“基于脉冲宽度调制的模块化多电平转换器策略的谐波分析”,国际可再生能源研究杂志 (IJRER),2016 年。 11. H.Ben Abdelghani、A. Bennani Ben Abdelghani、F. Richardeau、I. Ouerdani 和 I. Slama-Belkhodja,“用于高性能感应机驱动的混合三电平转换器”,电气系统杂志 JES,于 2016 年 12 月接受出版。
ANITA 来自厚靶的类大气中子 CAL 控制轴向寿命 CIA 电流诱导雪崩 DN 深 N 缓冲层 DUT 被测设备 FEM 有限元法 FIT 及时失效 FWD 续流二极管 IC 集成电路 IGBT 绝缘栅双极晶体管 LANSCE 洛斯阿拉莫斯中子科学中心 LET 线性能量传递 MCNP 蒙特卡罗 N 粒子 MOSFET 金属氧化物半导体场效应晶体管 MTTF 平均故障时间 NPC 中性点钳位 NPT 非击穿 NYC 纽约市 PID 比例 – 积分 – 导数 PSI 保罗谢尔研究所 PT 击穿 PWM 脉冲宽度调制 QARM Qinetic 大气辐射模型 RCNP 核物理研究中心 SEB 单粒子烧毁 TCAD 技术计算机辅助设计 E av 空间平均电场 P f 总设备故障率 P lf 局部设备部分故障率 RB 体区扩展电阻 T 0 温度常数 ti 故障时间 T j 结温 T SUM 器件通量积数量 V aval 雪崩电压 V CE 集电极-发射极电压 V DC 直流电压 V DS 漏源电压 Δ fi 故障通量 A 面积 E 电场 h 高度 i 故障事件总和 r 器件故障数量 Si 硅 SiC 碳化硅 ε 介电常数 λ 故障时间 ρ 净电荷密度 Ω 器件体积
• 这是基于自制低温太赫兹扫描近场光学显微镜 (SNOM) 的新进展,它能够探测太赫兹频率范围内材料的纳米电磁响应。本研究可视化了电子-光子准粒子的传播,并揭示了狄拉克流体中的强电子相互作用。手稿现已发布在 arXiv (arXiv:2311.11502) 上 • 在本研究中,我们测量了单层石墨烯中移动极化子波包的动力学。等离子体极化子的运动记录在具有超精细时空像素的 (1+1)d 图上。 • 我们开发了基于石墨烯交流电导率计算极化子群速度和极化子寿命的理论模型。这些模型完全捕捉了不同温度下费米液体和狄拉克流体状态下的实验观测结果。 • 我们对极化腔模式进行了温度依赖性研究,并证明了在 55K 下极化寿命长达 5 皮秒。 • 我们研究了狄拉克流体中的电子相互作用如何改变极化动力学。极化重正化在电荷中性点最为明显,其中等离子体极化子由相同密度的热激活电子和空穴维持。重正化表现为群速度和极化寿命的降低,这两者都取决于载流子密度。我们能够定量提取石墨烯的电子散射率和精细结构常数,这可作为石墨烯中电子相互作用强度的量度。
光伏能源一直在不断扩展,它将继续作为最流行的可再生能源源,从最近对实用程序扩展的存储系统进行质量和先进的智能功能,从而增加了功率电网(1)的稳定性和弹性。光伏逆变器中采用的技术是有效的,并且非常稳定。在大多数国家 /地区也进行了产品认证,与网格法规结合使用,为行业带来了一个通用和统一的技术和质量基础,这使得降级者和公司更容易构建新项目并继续增长(2)。本文重点介绍了对大型实用性缩放光伏植物中使用的主要技术的综述,该技术在cir拓扑,冷却,系统集成和系统托图方面。特别关注在不同国家遇到的不同气候的解决方案。本评论以第2节中的电路拓扑讨论开始。在这里,中性点的配置与三级二极管夹具的拓扑结合(3)。单阶段光伏应用中的三个级别拓扑具有很高的效率和可靠性(4),并在行业中广泛使用。此拓扑与热管冷却一起用于室外逆变器,并在第3节中给出了细节。在系统实现方面,有两个主要流都广泛使用。室外额定逆变器安装在室内或容器中的室内逆变器上。在第4节和第5节中对此进行了处理,其中给出并讨论了主要两种解决方案。每种类型的选择在很大程度上取决于本地环境条件和本地reg-
前言 本选集第 2 部分收录的论文报告了有关低压交流电浪涌标准的制定情况,根据浪涌保护装置的现场性能进行了“现实检验”,这些检验在某些情况下对这些标准中规定的要求的有效性提出了质疑,而在其他情况下则证实了这些标准的有效性。1985 年之前的论文版权归各自的出版商所有,他们慷慨地允许转载。1985 年之后的论文是在美国国家标准与技术研究所的赞助下发表的,因此属于公共领域。第 2 部分附件 A 的引文是为开发 IEEE SPD 三部曲(C62.41.1 TM –2002;C62.41.2 TM –2002;和 C62.45 TM -2002)的工作组收集的,但并非详尽无遗的列表。虽然得到承认和赞赏,但由于明显的版权限制,其他研究人员的这 12 篇论文不能在此转载。目录 瞬态控制水平:低压系统绝缘协调提案 (1976) 瞬态控制水平理念和实施 - 第 1 部分:理念背后的推理 (1977) 额定电压高达 600 V 的交流电源电路浪涌电压指南 (1979) 低压交流电源浪涌电压指南的制定 (1979) 压敏电阻与环境:赢得复赛 (1986) 浪涌测试的真实、逼真的环波 (1991) 100/1300 浪涌测试与压敏电阻故障率之间的不兼容性 (1991) 根据 VDE 0160 标准测试压敏电阻 (1991) 标准:跨国方面 (1991) 通过现场经验验证浪涌测试标准:高能测试和压敏电阻性能 (1992) 对浪涌环境标准进行现实检验 (1996) 使用白炽灯故障水平用于评估浪涌环境 (1997) 将高浪涌电流引入长电缆:多则少 (1997) 制定面向消费者的浪涌保护指南 (1997) 中性点接地做法对低压装置中雷电流分散的影响 (1998) 浪涌保护与过压场景的困境:对低压 SPD 的影响 (1998) 监测浪涌电压的谬误:SPD 和 PC 比比皆是!(1999) 建筑物直接闪击后雷电流的分散 (2000) 电能质量参数测量的新 IEC 标准 (2000) IEEE C62.41 的三部曲更新 (2000) 浪涌保护装置在共享雷电流中的作用和压力 (2002) 新 IEEE 标准促进下一代系统兼容性 (2002)
简介 - 当两个石墨烯层用相对扭曲角θ相互旋转时,扭曲的双层石墨烯(TBG)形成。在一组相称的角度θI[1]下,该系统构成了一个完美的结构结构(“ Moir´e lattice”),其中Bloch的定理适用。此外,对于所谓的“魔术角”,已经预测了靠近电荷中性点附近的扁平频率的消失的费米速度[2,3]。第一个魔术角被发现为θ〜1。05°[4]。 在2018年,TBG围绕第一个魔术角进行了调整,显示出隔热阶段[5]靠近圆顶圆顶阶段[6]旁边的Holelike Moir´e Minibands的半填充[5],类似于Cuprates [7]中发生的情况[7]。 是,已经预测和观察到了相关的阶段,例如异常的霍尔·弗罗曼德主义[8,9]和量子霍尔效应[10,11],并且与非琐事Chern数字[12-14]有关。 观察到的超导性(SC)通常归因于存在产生破碎对称性状态[15-18]和奇怪金属行为的电子配对机制,[19-22],但也讨论了电子 - phonon配对[23,24]。 在扭曲的N层石墨烯中进一步观察到相似的相关效应和鲁棒SC,以2≤n≤5[25]。 值得注意的是,在n> 2的情况下,Pauli限制违反了约3倍的限制[25-28],这加强了这些分层系统中的SC确实是非常规的观念[29 - 32]。 这可以05°[4]。在2018年,TBG围绕第一个魔术角进行了调整,显示出隔热阶段[5]靠近圆顶圆顶阶段[6]旁边的Holelike Moir´e Minibands的半填充[5],类似于Cuprates [7]中发生的情况[7]。是,已经预测和观察到了相关的阶段,例如异常的霍尔·弗罗曼德主义[8,9]和量子霍尔效应[10,11],并且与非琐事Chern数字[12-14]有关。观察到的超导性(SC)通常归因于存在产生破碎对称性状态[15-18]和奇怪金属行为的电子配对机制,[19-22],但也讨论了电子 - phonon配对[23,24]。在扭曲的N层石墨烯中进一步观察到相似的相关效应和鲁棒SC,以2≤n≤5[25]。值得注意的是,在n> 2的情况下,Pauli限制违反了约3倍的限制[25-28],这加强了这些分层系统中的SC确实是非常规的观念[29 - 32]。这可以由于电子系统以强耦合极限在强[33 - 41]中实现的出现的Uð4Þ对称性,因此很难解决不同对称性破坏模式之间的竞争。尽管与可以通过电掺杂的铜层相比,这些Moir´e系统似乎得到了很好的控制,但在精确的相图上仍然没有共识,这些相图应敏感地取决于周围的介电环境[21,42]。
摘要 电子组件使用各种具有不同机械和热性能的聚合物材料来在恶劣的使用环境中提供保护。然而,机械性能的变化(例如热膨胀系数和弹性模量)会影响材料的选择过程,从而对电子产品的可靠性产生长期影响。通常,主要的可靠性问题是焊点疲劳,这是电子元件中大量故障的原因。因此,在预测可靠性时,有必要了解聚合物封装(涂层、灌封和底部填充)对焊点的影响。研究表明,当焊料中存在拉伸应力时,由于聚合物封装的热膨胀,疲劳寿命会大大缩短。拉伸应力的加入使焊点处于周期性多轴应力状态,这比传统的周期性剪切载荷更具破坏性。为了了解拉伸应力分量对微电子焊点疲劳寿命缩短的影响,有必要将其分离出来。因此,我们构建了一个独特的样本,以使无铅焊点经受波动的拉伸应力条件。本文介绍了热机械拉伸疲劳样本的构造和验证。热循环范围与灌封膨胀特性相匹配,以改变施加在焊点上的拉伸应力的大小。焊点几何形状的设计具有与 BGA 和 QFN 焊点相关的比例因子,同时保持简化的应力状态。进行了 FEA 建模,以观察焊点在热膨胀过程中的应力-应变行为,以适应各种灌封材料的特性。焊点中轴向应力的大小取决于热膨胀系数和模量以及热循环的峰值温度。样本热循环的结果有助于将由于灌封材料的热膨胀而导致焊点经历的拉伸应力的大小与各种膨胀特性相关联,并为封装电子封装中焊点的低周疲劳寿命提供了新的见解。简介大量电子元件故障归因于焊点疲劳故障。航空航天、汽车、工业和消费应用中的许多电子元件都在波动的温度下运行,这使焊点受到热机械疲劳 (TMF) 的影响。电子组件中的焊料疲劳是温度波动和元件与印刷电路板 (PBC) 之间热膨胀系数 (CTE) 不匹配的结果。在温度变化过程中,PCB 和元器件 CTE 的差异会引起材料膨胀差异,从而使焊点承受剪切载荷。为了减少芯片级封装 (CSP) 中焊点所承受的剪切应变,人们使用了各种底部填充材料来限制焊点的变形。芯片级焊料互连(例如倒装芯片封装中的焊料)尤其受益于底部填充材料,因为它可以重新分配热膨胀应力,从而限制施加在焊料凸点上的应变。除了限制剪切应变之外,底部填充材料的膨胀还会导致球栅阵列 (BGA) 焊点产生较大的法向应变。Kwak 等人使用光学显微镜的 2D DIC 技术测量了热循环下焊点的应变 [1]。他们发现,CTE 为 30 ppm/ºC 且玻璃化转变温度 (T g ) 为 80ºC 的底部填充材料在 100ºC 的温度下可以产生 6000 µƐ 的平均法向应变。这些高法向应变并不像 BGA 封装中的剪切应变那样表现出与中性点距离相同的依赖性。法向应变的大小与 CTE、弹性模量 (E)、封装尺寸和温度有着复杂的依赖关系。法向应变的增加使焊点受到剪切应变和轴向应变的组合影响,这反过来又使焊点在温度波动的条件下受到非比例循环载荷。