“海上发电站”是指通过基座附接于海床的平台,具有一个或多个甲板,无论是开放式还是全覆盖式,可容纳电力变压器、仪器仪表、保护和控制系统、中性点接地电阻器、无功补偿、备用发电设备、加油设施、辅助和不间断电源系统和变压器、住宿和/或应急避难所、起重设备、计量站、气象设备、直升机着陆设施、餐饮设施、饮用水储存、黑水分离设备、控制枢纽、排水设施、接入设备、J 型管、标记和照明以及其他相关设备和设施,以实现电子通信的传输和在平台上收集和输出电力,并且根据发电站的类型,还配备低压、中压和/或高压开关设备,和/或交流滤波器和/或带有开关装置的交直流转换器,和/或直流设备,包括直流电容器和直流滤波器;
GRIDCON ® ACF 工业版是具有挑战性的补偿任务的首选,这些任务需要可靠性和安全性,例如,甚至在超出正常工作电压和具有挑战性的环境条件下:I 可在满功率下运行高达 690 V 或更高电压,而无需降容I 额定电流可以以模块化方式从 125 A 扩展到 3,000 A,例如用于 STATCOM 系统I 高功率密度和紧凑设计I 低损耗I 非常耐用的薄膜电容器I 过电压类别 III 高达 1000 V - 即使在具有隔离中性点的电网中(IT 网络配置)I 防护等级可达 IP 54,可选外部水冷以实现完全封装I 动态补偿无功功率、谐波和闪变,以及在一个单元中平衡负载
“海上发电站”是指通过基座附接于海床的平台,具有一个或多个甲板,无论是开放式还是全覆盖式,可容纳电力变压器、仪器仪表、保护和控制系统、中性点接地电阻器、无功补偿、备用发电设备、加油设施、辅助和不间断电源系统和变压器、住宿和/或应急避难所、起重设备、计量站、气象设备、直升机着陆设施、餐饮设施、饮用水储存、黑水分离设备、控制枢纽、排水设施、接入设备、J 型管、标记和照明以及其他相关设备和设施,以实现电子通信的传输和在平台上收集和输出电力,并且根据发电站的类型,还配备低压、中压和/或高压开关设备,和/或交流滤波器和/或带有开关装置的交直流转换器,和/或直流设备,包括直流电容器和直流滤波器;
• 拓扑 2:T 型拓扑因晶体管围绕中性点 (VN ) 排列的方式而得名。Q1 和 Q2 连接直流链路,Q3 和 Q4 与 VN 串联。滤波器看到的纹波频率等于施加到开关 Q1 至 Q4 的 PWM 频率。这定义了滤波器元件的大小,以实现交流线路频率下所需的低总谐波失真。Q1 和 Q2 看到全总线电压,并且需要额定为 1,200 V,才能在系统中为 800 V 直流链路电压。由于 Q3 和 Q4 连接到 VN ,它们只看到一半的总线电压,并且在 800 V 直流链路电压系统中可以额定为 600 V,这节省了这种转换器类型的成本。请参阅 10 kW 双向三相三级 (T 型) 逆变器和 PFC 参考设计。 • 拓扑结构 3:在有源中性点钳位 (ANPC) 转换器拓扑结构中,VN 与有源开关 Q5 和 Q6 连接,并将 VN 设置在直流链路电压的中间。与 T 型转换器一样,滤波器看到的纹波频率等于定义交流线路滤波器大小的 PWM 频率。这种架构的优点在于,所有开关的额定电压都可以是最大直流链路电压的一半;在 800-V 系统中,您可以使用额定电压为 600-V 的开关,这对成本有积极影响。关闭此转换器时,重要的是将每个开关上的所有电压限制为直流链路电压的一半。换句话说,控制微控制器 (MCU) 需要处理关机排序。TI 的 TMS320F280049C 和 C2000™ 产品系列中的其他设备具有可配置逻辑,允许在硬件中实现关机逻辑,以减轻 MCU 的软件任务负担。请参阅基于 GaN 参考设计的 11kW、双向、三相 ANPC。• 拓扑 4:中性点钳位 (NPC) 转换器拓扑源自 ANPC 拓扑。此处,VN 通过二极管 D5 和 D6 连接,并将 VN 设置在 DC 链路电压的中间。滤波器看到的输出纹波频率等于定义 AC 线路滤波器大小的 PWM 频率。与 ANPC 拓扑一样,所有开关的额定电压都可以是最大 DC 链路电压的一半,但不是另外两个开关,而是两个快速二极管。与 ANPC 拓扑相比,NPC 拓扑的成本略低,但效率略低。关断排序的要求也与 ANPC 拓扑相同。可以很容易地从上面提到的 ANPC 参考设计中派生出 NPC 拓扑。• 拓扑 5:飞行电容拓扑已经告诉您此转换器中发生的情况;电容器连接到由 Q1 和 Q2 以及 Q3 和 Q4 实现的堆叠半桥的开关节点。电容器两端的电压被限制为直流链路电压的一半,并在 V+/V– 之间周期性地变化;变化时,功率传输。此拓扑在正和负正弦波期间使用所有开关。在此拓扑中,滤波器看到的输出纹波频率是飞跨电容器每个周期移位的 PWM 频率的两倍,从而导致交流线路滤波器尺寸较小。同样,所有开关的额定电压均为最大直流链路电压的一半,这对成本有积极影响。
我们在石墨烯双层中发展了热传输中流动驱动现象的理论。我们在电子流体力学方面工作,并专注于双重电荷中性点。尽管在中立点,电荷转运与流体动力流相关,但电子密度的热闪光导致层之间的阻力和热传递。双层系统中的热传输受这两种现象的控制。我们以层间距离和电子液体的内在电导率来表达拖动摩擦系数和层间导电性。然后,我们获得热电导矩阵,并确定系统中流体动力速度和温度的空间依赖性。对于较短的系统,热阻力是由阻力确定的。在更长的系统中,实现了完美的热阻力的情况,其中两层的流体动力速度在系统的内部相等。给出了单层和双层石墨烯设备的估计值。我们的理论的预测可以通过高分辨率热成像和Johnson-Nyquist非局部噪声温度计来测试。
。但是,裁定设备操作的物理和化学裁定仍未完全揭示。在这项工作中,目的是阐明设备观察到的灵敏度的性质。朝着这个目标,一个物理化学模型,再加上RGO-EGT的实验表征,可以定量地将栅极电极处的生物认知事件与RGO-EGT的电子特性相关联。显示出在栅极电极处发生的生物识别的平衡,以确定RGO通道的表观电荷中性点(CNP)。RGO-EGT实验传递特性的多参数分析表明,识别事件调节CNP电压,过量的载体密度n n和RGO的量子电容。该分析还解释了为什么孔和电子载体迁移率,界面电容,转移曲线的曲率和跨导性对目标浓度不敏感。对生物识别事件晶体管转导的机制的理解是解释RGO-EGT免疫传感器响应的关键,并指导新颖和更敏感的设备的设计。
图 4:体育场 QD 电位剖面示意图和相关模拟。(a)上图:MLG 体育场 QD 电位剖面示意图,描绘了 QD 内部和外部的 MLG 带和电荷中性点(𝐸 456)。下图:体育场 MLG QD 的示意图。(b)上图:BLG 体育场 QD 电位剖面示意图,描绘了 QD 内部和外部的带隙和三角扭曲的 BLG 带和𝐸 456。下图:体育场 BLG QD 的示意图。(c、d)对 (c) MLG 和 (d) BLG 体育场 QD 的电子局域态密度的数值紧束缚模拟。d𝐼/d𝑉。对角条纹在 (d)(具有间隙屏障壁)中可见,但在 (c)(具有无间隙壁)中不可见。 BLG 体育场的 TB 模型包括 𝛾 8 跳跃和空间均匀的 60 meV 间隙。这些参数的灵感来自我们之前对圆形 BLG QD 的实验表征 [9],(另见 SI 第 6 节)。在 BLG 体育场 𝑑𝐼/𝑑𝑉 ? 图模拟中,仅考虑了子晶格 𝐴 > 的 LDOS 贡献。
摘要:本文介绍了一种用于电网连接应用的三相多电平多输入功率转换器拓扑。它包含一个三相变压器,该变压器在初级侧以开端绕组配置运行。因此,初级绕组的一侧由三相 N 电平中性点钳位逆变器供电,另一侧由辅助两电平逆变器供电。所提方法的一个关键特点是 N 电平逆变器能够独立管理 N - 1 个输入电源,从而避免了在混合多源系统中需要额外的直流/直流功率转换器。此外,它还可以管理连接到两电平逆变器直流总线的储能系统。 N 级逆变器以低开关频率运行,可配备导通压降极低的绝缘栅双极晶体管 (IGBT) 器件,而辅助逆变器则根据传统的高频两级脉冲宽度调制 (PWM) 技术以低压运行,可配备导通电阻极低的金属氧化物半导体场效应晶体管 (MOSFET) 器件。模拟和实验结果证实了所提方法的有效性及其在电网电流谐波含量和整体效率方面的良好性能。
PTI Transformers LP,加拿大马尼托巴省温尼伯 ORCID:1. 0000-0002-1216-6513 doi:10.15199/48.2024.11.39 可再生能源收集器变压器摘要。太阳能发电站或风电场中的可再生能源集电变压器 (RCT) 将集电系统的电压转换为传输级电压。由于主要目标是提高电压,RCT 在此功能上与发电机升压 (GSU) 变压器相似,但有一些设计特点和操作特性使这些装置独一无二,例如典型的绕组配置星形-星形-埋置三角形,低压绕组通常通过中性点接地电抗器接地。设计必须考虑低压电流和电压中的谐波。抽象的。光伏站或风电场中的可再生能源站(RES站)的主变压器将来自主系统的电压转换为输电级电压。由于主要目的是提高电压,RCT 在这方面的功能与 GSU 变压器相似,但有一些设计特点和操作特性使这些装置独一无二,例如典型的三角形-星形绕组配置,低压绕组通常通过中性接地电感器接地。设计必须考虑低压电流和电压中谐波的存在。 (可再生能源发电站主变压器) 关键词:电力变压器、可再生能源发电站、过电压、谐波。可再生能源集电变压器 (RCT) 是一种专用电力变压器,它在太阳能发电站或风力发电场中,将电站集电系统的电压(通常为 34.5 kV)转换为传输电压水平,通常范围从 138 到 345 kV 或 500 kV。可再生能源站中 RCT 的位置如图 1 所示。虽然直接连接到逆变器的小功率变压器在论文和标准 [1, 2] 中有很好的描述,但集电变压器在已发表的参考文献或标准中并没有很好的描述。因此,本文的目标就是填补这一空白。图 1。集电变压器放置在集电母线和传输线之间;来自参考文献。 [1] 大多数可再生能源可能会出于不同的原因使用多个集电变压器,例如为了限制其物理尺寸(特别是为了运输或由于场地限制),或者利用电站设计理念的特点,例如分配负载或在故障期间在电站各部分之间转移负载,或紧急加载。由于 RCT 的主要目的是提高电压,因此该变压器的功能与发电机升压 (GSU) 变压器类似。然而,RCT 与 GSU 有许多区别,包括:(i)典型的绕组配置为星形-星形-埋地三角形,而 GSU 绕组采用星形-三角形连接,(ii)RCT 的低压绕组通常通过中性点接地电抗器 (NGR) 接地,而高压绕组
5材料研究中心纳米结构科学研究中心,国家材料科学研究所,1-1纳米基,塔苏卡巴,日本305-0044 *乐队。反演对称性在菱形堆积的过渡金属二分法元素(TMDC)中赋予它们与平面电动极化相关的界面铁电性。通过将扭转角作为旋钮构建菱形堆积的TMDC,可以生成具有交替平面偏振的抗fiferroelelectric域网络。在这里,我们证明了这种并行堆叠的扭曲WSE 2中这种空间周期性的铁电极化可以将其Moiré电位烙印在远程双层石墨烯上。这种遥远的Moiré电位产生了明显的卫星电阻峰,除了石墨烯中的电荷 - 中性点,它们可以通过WSE 2的扭曲角度调节。我们对有限位移场上铁电滞后的观察表明,Moiré由远程静电电势传递。通过MoiréFerroelectricity构建的超级晶格代表了一种高度灵活的方法,因为它们涉及Moiré构造层与电子传输层的分离。这个远程莫伊尔被确定为弱势势,可以与常规的莫伊尔共存。我们的结果通过利用Moiré铁电性提供了二维材料的工程带结构和特性的全面策略。