通讯地址:ase@mit.edu 简介:需要储能来实现可调度的可再生能源供应,从而实现电网的完全脱碳。然而,这只有在大幅降低成本的情况下才能实现,而目前的电池技术预计目标就是将单位能量成本 (CPE) 降至 20 美元/千瓦时 1–3 。值得注意的是,要实现完全脱碳,需要以如此低的成本进行长达 100 小时的长时间储能。先前的分析表明,在这种可再生能源渗透率高的情况下,在比较不同技术的成本时,CPE 比往返效率 (RTE) 或单位功率成本 (CPP) 等其他参数更为关键。在这里,我们引入了一种电力存储概念,将电能作为显热存储在石墨存储块中,并使用多结热光伏 (TPV) 作为热机将其根据需要转换回电能。该设计是 Amy 等人提出的系统的产物。 2019 年,4 日,该发明进行了修改,使用固体石墨介质和熔融锡作为传热流体,而不是同时使用硅。原因有两个:(1) 石墨的 CPE 几乎比硅低 10 倍,这源于其单位质量成本较低(即 0.5 美元/千克 vs. 1.5 美元/千克)和单位质量热容量较高(2000 J kg -1 K -1 vs. 950 J kg -1 K -1 );(2) 锡的熔点和锡在石墨中的溶解度远低于硅,这减少了研发 (R&D) 过程中必须克服的问题数量。使用石墨也消除了对第二个罐子的需要,但使用固体介质的主要缺点是无法轻易提供稳定的放电速率,因为随着石墨在放电过程中冷却,储存器的功率输出将随时间而变化。因此,本研究的目的是研究系统设计中的这些变化如何影响整体技术经济。Amy 的论文中提出的技术经济分析在此重复(即使用相同的方法),但进行了更新和修改以反映设计变化,本文档提供了此分析的摘要。
引起抑制所需的浓度仅略高于微管蛋白浓度。在相同浓度和较高浓度下的细胞切拉蛋白B(CB)没有明显的作用。细胞切拉蛋白A还抑制秋水仙碱结合活性,表明它含有小管蛋白分子。结果表明Ca与微管蛋白的硫基团的反应是为了作用。” 从此摘要中解读得知细胞切拉斯蛋白A有抑制微管蛋白自我组合的效果,而细胞切拉斯蛋白a colchicine与粉Tubulin的结合能力,作者只是,“建议”这样的效果可能是因为微管蛋白
董事会特此宣布,2025年2月14日,(i)Beihai Xinhe(该公司的间接子公司)与LVXIANG Resources签订了Beihai Asset转移协议,根据Beihai Xinhe,LVXiang Resources应出售,Beihai Resources应收购Beihai Assets Assets Assets Assets Assets Assets; (ii)Zhanhua Huihong(公司的间接子公司)与LVZHI Resources签订了Zhanhua资产转让协议,根据Zhanhua Huihong的出售,Lvzhi Resources应获得,Zhanhua Target Altarg Target Assets; (iii)Weiqiao Aluminum&Power(公司的间接子公司)签订了与Weiqiao可再生的香港股权转让协议,根据Weiqiao Aluminum&Power way weiqiao Alluminum&Power应出售,Weiqiao可再生可再生产应获得,全部股权获得了香港的资源。
周燕萍 ( 通信作者 ), 硕士 , 研究员 , 主要研究方向为半导体材料的刻蚀工艺开发 。E-mail:yanping_zhou@ ulvac. com
图 6. 带有集成光学腔的离子阱:(a)因斯布鲁克大学的集成光学腔阱 [ 93 ]。从离子发射的 854nm 光子的 50% 可被腔收集,并转换为 1550nm 的通信波长。(b)萨塞克斯大学的集成光学腔阱。该阱展示了离子和腔模式之间的第一个强耦合。(c)奥胡斯大学的离子阱。腔镜 (CM) 沿轴向,径向泵浦光束用于将离子泵回多普勒冷却循环。这些离子可在 CCD 上成像。压电换能器 (PZT) 用于主动锁定光学腔与 RP 激光器共振。(d)当径向 RP 激光器开启时,大约 100 个离子的整个晶体都是明亮的。 (d)当径向RP关闭时,只有腔内的离子是亮态,腔外的离子处于暗态[144]。
提到了2022年9月23日(“招股说明书”)的公司招股说明书((2022)min min Chu No.7)该公司于2022年8月从福建省高等法院(“福建高级法院”)收到。根据起诉书,当代安培技术公司有限公司(“ CATL”,一家在深圳证券交易所上市的公司,股票代码:300750)提出了有关知识产权的侵权索赔,涉及“包装EV电池的包装组成部分”(PATENT IMBATE)(专利编号:2013200559664.6) (Luoyang)Co.,Ltd。(中航锂电(洛阳)有限公司)(“中国锂电池Luoyang”)和Fuzhou Dynamic Automobile销售服务有限公司(福州动感汽车销售服务有限公司)(独立于公司的汽车卖家)(“案例”)。
由于神经外科手术期间大脑会变形,因此可以使用术中成像来可视化大脑结构的实际位置。这些图像用于图像引导导航以及确定切除是否完整并定位剩余的肿瘤组织。术中超声 (iUS) 是一种便捷的模式,采集时间短。然而,由于噪音和伪影,iUS 图像难以解释。特别是,肿瘤组织很难与健康组织区分开来,并且很难在 iUS 图像中划定肿瘤的界限。在本文中,我们提出了一种使用 2-D 和 3-D U-Net 在 iUS 图像中自动分割低级别脑肿瘤的方法。我们对网络进行了三重训练,每重有 12 个训练案例和 5 个测试案例。获得的结果很有希望,中位 Dice 得分为 0.72。估计分割和真实分割之间的体积差异与评分者内部体积差异相似。虽然这些结果是初步的,但它们表明深度学习方法可以成功应用于术中图像中的肿瘤分割。
背景:切除的完整性是卵巢癌患者的关键预后指标,而肿瘤靶向荧光图像引导手术 (FIGS) 的应用提高了细胞减灭术中腹膜转移的检测率。CD24 在卵巢癌中高表达,已被证明是肿瘤靶向成像的合适生物标志物。方法:研究了高级别浆液性卵巢癌 (HGSOC) 的细胞系和异质患者来源的异种移植 (PDX) 肿瘤样本中的 CD24 表达。将单克隆抗体 CD24 与 NIR 染料 Alexa Fluor 750 结合并评估最佳药理参数 (OV-90,n = 21) 后,对原位 HGSOC 转移性异种移植 (OV-90,n = 16) 进行了实时反馈的细胞减灭术。将术中 CD24 靶向荧光引导的影响与单独的白光和触诊进行了比较,并在术后监测疾病复发(OV-90,n = 12)。在四种临床注释的转移性 HGSOC 原位 PDX 模型中进一步评估了 CD24-AF750,以验证术中引导的转化潜力。结果:与原位 HGSOC 异种移植中的标准白光手术相比,CD24 靶向术中 NIR FIG 显着(47.3%)改善了肿瘤检测和切除,并减轻了术后肿瘤负担。CD24-AF750 允许识别四种 HGSOC PDX 中肉眼无法检测到的微小肿瘤病变。解读:CD24 靶向 FIG 具有转化潜力,可作为改善卵巢癌减瘤手术的辅助手段。资金:本研究由 H2020 计划 MSCA-ITN [675743]、Helse Vest RHF 和 Helse Bergen HF [911809、911852、912171、240222、911974、HV1269] 以及挪威癌症协会 [182735] 和挪威研究理事会通过其卓越中心资助计划 [223250、262652] 资助。© 2020 作者。由 Elsevier BV 出版 这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章。(http://creativecommons.org/licenses/by-nc-nd/4.0/)
对肿瘤的完整切除对于神经胶质瘤患者的生存很重要。即使达到了总切除术,在切除腔风险中剩下的微尺度组织复发。高分辨率魔术角旋转核磁共振(HRMAS NMR)技术可以使用生物标志物代谢物的峰强度来区分健康和机构组织。该方法是快速,敏感的,并且可以与小型和未经处理的样品一起使用,这使其成为手术期间实时分析的良好功能。然而,只能制作出有针对性的肛门,可以制造出已知肿瘤生物标志物的存在,这需要具有化学背景的技术人员,并且在手术期间就具有有关肿瘤代谢的知识的病理学家。在这里,我们表明我们可以实时执行此分析,并可以使用机器学习以不定目标的方式分析完整的频谱。我们在神经胶质瘤和对照样品的新型和大型HRMA NMR数据集(n = 565)上工作,该数据集也标有定量病理分析。我们的结果表明,基于森林的随机方法可以用肿瘤细胞的样品准确和对照区分,以中位AUC为85.6%,AUPR为93.4%。我们还表明,我们可以进一步区分良性和恶性样本,中位AUC为87.1%,AUPR为96.1%。我们分析了分类的特征(峰值)重要性,以解释分类器的结果并验证已知的恶性生物标志物(如肌酸和2-羟基氯丁烷)在区分肿瘤和正常细胞方面起着重要作用,并提出了新的生物标志物区域。
目的通过观察术前脑映射方法的准确性如何随着用于分析的激活簇距离差异而变化,本研究旨在阐明如何使用术前功能性神经影像学以最大限度地提高映射准确性。方法在切除术前,使用功能性磁共振成像 (fMRI) 和脑磁图 (MEG) 映射 19 名脑肿瘤或海绵状血管瘤患者的语言功能。然后使用开颅后立即和切除前进行的直接皮质刺激映射来验证映射结果。对执行了运动 (n = 14) 和语言 (n = 12) 等效 MEG 和 fMRI 任务的患者子集进行单独和组合预测评估。此外,通过将敏感性和特异性与线性增加的距离阈值作图,确定了由 J 统计量评估的导致最大准确度的距离。结果 fMRI 显示运动和语言映射的最大映射精度均为 5 毫米。 MEG 显示,对于运动映射,40 毫米处的最大映射精度以及对于语言映射,15 毫米处的最大映射精度。在文献中使用的标准 10 毫米距离下,MEG 对运动和语言映射的特异性都高于 fMRI,但对运动映射的灵敏度较低。结合 MEG 和 fMRI 显示,对于运动映射,15 毫米和 5 毫米(分别为 MEG 和 fMRI 距离)的最大精度以及 10 毫米距离的 MEG 和 fMRI 的语言映射精度。对于运动映射,在最佳距离结合 MEG 和 fMRI 的精度高于单个预测的最大精度。结论本研究表明,fMRI 和 MEG 的语言和运动映射的精度在很大程度上取决于分析中使用的距离阈值。此外,与单独使用这两种方式相比,结合 MEG 和 fMRI 可以提高运动映射的精度。