慢性肾脏疾病患者心血管疾病的高患病率表明肾脏和心脏运作的致病途径之间存在显着相互作用。这些相互作用涉及所有细胞类型(内皮细胞,平滑肌细胞,巨噬细胞等),易于氧化损伤和结构改变的脉管系统,肾小球和心脏的成分。发生了一个恶性循环,有害因素,例如活性氧和血管结构的炎症损害,它们本身成为释放到当地环境中的其他危险/有毒成分的来源。因此,这种恶性循环在慢性肾脏疾病中的证据应导致传统和非交易风险因素增加其他因素。本综述将检查进行性肾功能障碍期间的过程,肾脏重塑,心脏肥大以及氧化应激在这些并发症发展中的横向作用。
人们对设计能够改变构象或改变组装状态以响应不同刺激的蛋白质产生了浓厚的兴趣,这些刺激包括配体结合、11、12 金属配位、13、14 磷酸化、15、16 和半胱氨酸氧化/还原。17、18 虽然确实存在几种此类人工多状态系统的例子,3、11–20 但设计对多种刺激作出反应的蛋白质或从单个蛋白质序列/结构中获得两种以上结构不同状态的能力却受到限制(图 1a)。21 这主要是因为大多数蛋白质设计策略都涉及实施广泛的非共价相互作用(特别是疏水堆积),以获得与深自由能最小值相对应的单一稳定结构。21–24 这种策略不仅限制了结构多样化的潜力,而且降低了所得蛋白质结构对刺激作出响应和可重构的潜力。
此外,当 TMO 充电至更高电压时,晶格氧可以参与阴离子氧化还原以补偿电荷。[15,16] 因此,氧化还原反应会在首次充电时贡献额外的容量。由于晶格结构内的氧损失,相关容量在接下来的循环中通常可逆性要低得多。[17-19] 此外,过渡金属离子可以在晶格氧氧化还原反应过程中迁移到钠离子层,导致层状 TMO 的结构变形。[20,21] 因此,高能量密度 SIB 正极设计需要了解层状 TMO 中的氧阴离子氧化还原活性,以更好地设计正极材料,提高氧化还原活性的可逆性,从而稳定循环性能。层状钠 TMO 的晶格氧氧化还原活性已通过多种原位或非原位技术进行了表征,例如拉曼光谱、X 射线光电子光谱和 X 射线吸收光谱。[22 – 24] 结果通常揭示有关充电或放电时表面氧局部电子态变化的信息。[18,25,26] 此外,了解本体(晶格)氧氧化还原活性对于解释相关的晶格结构变化和电化学过程的可逆性至关重要。
锌金属在电化学领域的应用一直具有特定的兴趣,因为它是高能密度电池和牺牲电极的偏爱材料,可保护其他金属组件免受腐蚀。除了高能量密度以外,其他一些因素(例如其低成本,易于处理,无毒性和锌的丰度)使这种金属受到了研究人员的极大关注。在过去的几十年中,已经致力于发现和新兴的电力可充电基于锌的电池,以回应在电子设备快速增长的电子设备和汽车业务中日益增长的能源消耗要求。然而,无论材料科学和细胞设计中的发展如何,都在开发能够替代其他可行的可充电电池的系统中获得了略有突破。钝化是用于商业化的锌空气电池(ZAB)中最具挑战性的障碍之一。最近,已经执行了一些发展,以减轻Zabs中锌阳极的钝化。本综述对该问题的各个方面进行了仔细的调查,以及缓解锌阳极腐蚀和钝化的最新发展。
1 法国巴黎-萨克雷大学泰雷兹公司混合物理部门 - F-91767 帕莱索,法国 2 法国巴黎高等物理与材料研究实验室,PSL 研究大学,法国巴黎国家科学研究院 F-75005 巴黎,法国 3 代尔夫特理工大学 Kavli 纳米科学研究所 - PO Box 5046, 2600 GA 代尔夫特,荷兰 4 萨勒诺大学“ER Caianiello”物理系 - I-84084 Fisciano (SA),意大利 5 CNR-SPIN - Via Giovanni Paolo II, 132, I-84084 Fisciano (SA),意大利 6 查尔姆斯理工大学微技术和纳米科学系-MC2 SE-41296 哥德堡,瑞典 7 物理系和纳米技术与先进科学研究所材料,巴伊兰大学拉马特甘,以色列 8 物理系“E. Pancini”,那不勒斯费德里科二世大学 - Monte S. Angelo 综合楼,I-80126 那不勒斯,意大利 9 GFMC,马德里康普顿斯大学材料物理系 - E-28040 马德里,西班牙 10 CNR-SPIN,Monte S. Angelo 综合楼 - Via Cinthia,I-80126 那不勒斯,意大利
微囊泡(MVS),大脑普遍的细胞至关重要地有助于细胞间通信,代表了能够传播并主动将信号分子从星形胶质素传播到神经元的关键矢量化系统,最终调节靶细胞功能。这些信号系统的临床相关性的增加需要对MV特征有更深入的了解,该特征当前受纳米级维度和构成释放率低的限制。因此,为了研究此类神经胶质信号的特征,基于纳米技术的方法以及需要在生成MV时的非常规,具有成本效益的工具的应用。Here, small graphene oxide (s-GO) nano fl akes are used to boost MVs shedding from astrocytes in cultures and s-GO generated MVs are compared with those generated by a natural stimulant, namely ATP, by atomic force microscopy, light scattering, attenuated total re fl ection e fourier transform infra-red and ultraviolet resonance Raman spectroscopy.我们还报告了两种MVS的能力,在斑块夹紧培养的神经元的急性和短暂暴露后,调节基础突触传播,诱导合成活性的稳定增加,并伴随着神经元质膜膜膜弹性特征的变化。©2021作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
冠状病毒疾病2019(COVID-19)是一种高度的原腹性疾病,导致静脉和动脉循环中的血栓形成,包括肺和肾血管中的微血管血栓形成,尽管有强化的抗抗调节。covid-19通过在宿主细胞(包括内皮细胞)的表面结合血管紧张素转换酶2来启动细胞感染。1附着会促进无序的细胞因子旁分泌信号传导,包括促进性分子,促凋亡介质和凝结激活,导致血栓形成。凝血异常是严重感染的众所周知的特征,但是在所有报告中,这些变化(尤其是血栓形成)在Covid-19中比在其他肺炎中更为常见,尽管标准性血栓预防或治疗剂量的抗抗激素。2,COVID-19患者血栓形成的发生率差异很大,具体取决于抗凝治疗方案以及是否在重症监护中治疗患者,由于中央线以及固定性和机械通气等其他危险因素。对150名Covid-19患者的一项多中心研究表明,尽管有预防性或治疗性抗糖性,但血栓形成的患病率为43%。2 COVID-19中血栓形成的病理生理学很可能是多因素的,并且血栓形成的高率似乎是由内皮炎症和升高的cogula-
Francesca Briganti,1,2,3,4,15 Han Sun,3,15 Wu Wei,5 Jingyan Wu,3 Chenchen Zhu,3 Martin Liss,6 Martin Liss,6 Ioannis Karakikes,7 Shannon Rego,3 Shannon Rego,3 Andrea Cipriano,8 Andrea Cipriano,8 Michael Snyder,3 Benjamin Meder,5 Genjamin Meder,5 gules Meder,5,9 xu xu xu xu xu xu,xu n. xu n. xu xu,x.9。 Gotthardt,6,12,13 Mark Mercola,4 *和Lars M. Steinmetz 1,3,4,5,14,16, * 1欧洲分子生物学实验室(EMBL),基因组生物学单位,海德堡,德国海德堡2美国加利福尼亚州斯坦福大学的斯坦福大学4心血管研究所和医学系,斯坦福大学,美国加利福尼亚州斯坦福大学,美国5斯坦福大学基因组技术中心,斯坦福大学,斯坦福大学,加利福尼亚州帕洛阿尔托,美国6 Neuromuscular and Cardiovascular and Cardiovascular Cell Bimogology,Max delbr€uck ucker for Cardior for Cardiquar for Cardiquar and Cardior for Cardior of Cardiquar and Cardior of Cardiquar and Cardior of Cardior of Cardior of Cardior of Cardiorcult Stanford University, Stanford, CA, USA 8 Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, USA 9 Institute for Cardiomyopathies Heidelberg and Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany 10 SOPHiA Genetics, St. Sulpice, Switzerland 11 Laboratoire de Cardioge´ ne´ tique Mole´ culaire, Centre de Biologie Et Pathologie EST,Lostices Civil De Lyon,Lyon,法国12个心脏病学系,Charite´ -Universita tsmedizin柏林,柏林,德国,柏林,柏林,13 DZHK:德国心血管研究中心,柏林,柏林,德国柏林,德国,14 DZHK,DZHK:德国副作用,副作用Embl Hebberg,Heidelberg,Heidelberg,Heidelberg,Heidelberg,Heidelberg,Heidelberg,Heidelberg联系 *信件:mmercola@stanford.edu(M.M.),larsms@stanford.edu(l.m.s.)
目的:紫杉醇 (PTXL) 和吉西他滨 (GEM) 的序贯治疗被认为对非小细胞肺癌具有临床益处。本研究旨在研究能够在癌细胞内顺序释放 PTXL 和 GEM 的纳米系统的有效性。方法:PTXL-ss-聚(6-O-甲基丙烯酰-d-半乳吡喃糖)-GEM (PTXL-ss-PMAGP-GEM) 是通过二硫键 (-ss-) 将 PMAGP 与 PTXL 结合而设计的,而 GEM 则通过琥珀酸酐 (PTXL:GEM=1:3) 结合。两亲性嵌段共聚物 N-乙酰-d-葡萄糖胺 (NAG)-聚(苯乙烯-alt-马来酸酐) 58 -b-聚苯乙烯 130 充当靶向部分和乳化剂,用于形成纳米结构 (NLC)。结果:PTXL-ss-PMAGP-GEM/NAG NLC(119.6 nm)在体外依次释放 PTXL(氧化还原触发),然后是 GEM(pH 触发)。氧化还原和 pH 敏感的 NLC 很容易均匀分布在细胞质中。NAG 增强了癌细胞对 NLC 的吸收和肿瘤的积累。与缺乏 pH/氧化还原敏感性或游离药物组合的 NLC 相比,PTXL-ss-PMAGP-GEM/NAG NLC 在体外表现出协同细胞毒性,并且在肿瘤小鼠中具有最强的抗肿瘤作用。结论:本研究证明了 PTXL-ss-PMAGP-GEM/NAG NLC 能够通过靶向细胞内顺序释放药物实现协同抗肿瘤作用。关键词:顺序释放、氧化还原敏感、pH 敏感、协同效应、联合药物输送、吉西他滨、紫杉醇
