pia.schweizer@cea.fr电子探针微分析(EPMA)是一种可靠且广泛使用的技术,可用于对科学和工业应用进行非破坏性,准确的材料表征。尽管对锂具有极大的兴趣(LI),并且迫切需要在微米级进行准确的非破坏性分析,但使用EPMA对LI的LI量化尚未成功进行。最近开发的周期性多层允许围绕特征性的li k发射〜50 eV [1]的能量范围的光谱,但是配备有弯曲的晶体光谱仪和标准商业化多层的微型探针检测和定量没有衍射光栅仍然具有挑战性。LI检测的困难是由不同的因素引起的:LI的荧光产量极低,很少有Li 1S核心孔的衰减产生的特征光子,有利于螺旋电子的发射。由于其低能量,光子甚至在离开样品及其最终涂层之前就被强烈吸收。因此,信号主要来自可能受到污染的薄表面层,并且可能对电子轰击敏感。微探针成分,尤其是通过分离窗口的进一步吸收光子,将降低测得的强度。由于Li K发射(2p - 1s转变)涉及价电子,因此Li发射带的形状高度依赖于价带中的状态密度(DOS),并且高度依赖于锂原子的化学状态。SCI。 2021,11,6385。 2022,51(4),403。SCI。2021,11,6385。2022,51(4),403。某些EV和强峰形变化的化学位移可能会发生,对于光元的EPMA应该是预期的[2,3],使定量分析变得复杂。这项工作显示了不同材料中LI定量EPMA的一些有希望的结果,包括电池化合物和LI浓度降至2%的金属合金。在整合新检测系统以及使用适用于低压EPMA的实际标准和校正程序进行定量程序之后,这是可能的。即使需要进行额外的调查,研究人员的锂表征也引起了极大的兴趣。我们表明,即使EPMA包含在重矩阵中,EPMA是对LI进行定量分析的强大工具,其元素显示出与LI相同的光谱范围内的特征发射带。这种新颖的LI量化方法比使用SEM或配备了多层光栅的ENER或电子微探针检测到其他技术更容易访问,并且比检测更便宜。[1] Polkonikov,V.,Chkhalo,N.,Pleshkov,R.,Giglia,A.,Rividi,N.,Brackx,E.,Le Guen,K.[2] Schweizer,P.,Brackx,E.,Jonnard,P。,X射线光谱。[3] Hassebi,K.,Le Guen,K.,Rividi,N.,Verlaguet,A.,Jonnard,P.,X-Ray Spectrom。(http://doi.org/10.1002/xrs.3329)在印刷中。
摘要:对两种不同类型的电解质(共溶剂和多盐)进行了测试,以用于高压 LiNi 0.5 Mn 1.5 O 4 || Si/石墨全电池,并与含碳酸盐的标准 LiPF 6 电解质(基线)进行了比较。在电池的使用寿命内对阳极和阴极进行原位事后 XPS 分析表明,基线电解质的 SEI 和 CEI 不断增长。在共溶剂电解质中循环的电池表现出相对较厚且长期稳定的 CEI(在 LNMO 上),而确定在 Si/石墨上形成了缓慢增长的 SEI。多盐电解质提供更多富含无机物的 SEI/CEI,同时也形成了本研究中观察到的最薄的 SEI/CEI。在基线电解质电池中发现了串扰,其中在阴极上检测到 Si,在阳极上检测到 Mn。观察发现,多盐电解质和共溶剂电解质均能显著减少这种串扰,其中共溶剂最有效。此外,多盐电解质主要在使用寿命末期检测到铝腐蚀,其中阳极和阴极上均有铝。虽然共溶剂电解质在限制串扰方面提供了更优越的界面性能,但多盐电解质提供了最佳的整体性能,这表明界面厚度比串扰发挥了更好的作用。结合它们的电化学循环性能,结果表明多盐电解质为高压电池提供了更好的电极长期钝化。关键词:LNMO-Si/石墨电池、固体电解质界面、SEI、阴极电解质界面、CEI、表面分析、离子液体电解质
商业港口飞船和海洋船只是一个运输部门,历史上很难脱碳。为了推进零排放港口飞船的商业化,加利福尼亚能源委员会资助了零排放拖船项目。项目团队为氢燃料电池拖船开发了一种设计,该设计的评级为最多90吨bollard Pull(通常以吨为吨定义的容器的拉或拖曳能力)。该容器旨在提供辅助服务,并使用燃料电池,电池和液体氢储罐。项目小组调查了该船必须满足的船只的经济可行性以及该船只必须满足的技术,安全和监管要求。项目团队还研究了向容器和液体氢层技术提供氢的途径。项目团队发现拖船在技术上是可行的。
电池101在1980年代开发,并获得2019年诺贝尔化学奖的认可,锂离子电池已成为世界上最常用的电池之一。它为大多数手机和笔记本电脑提供动力,并且驱动了电动汽车生产的激增。与大多数电池一样,锂离子电池由三个主要组件组成:正电极(阴极),负电极(阳极)和两个之间的离子传输介质(电解质)。对于每个组件使用的材料都有多种选择,但是最常见的设计具有石墨制成的阳极(碳);由含锂的金属氧化物制成的阴极,例如氧化锂或锰氧化锂;以及结合锂盐和有机溶剂的电解质。
锂离子电池的热逃亡引起的火灾甚至爆炸的现象对电动汽车安全构成了严重威胁。对核心材料热失控反应机制和反应链的深入研究是提出一种防止电池热失控并提高电池安全性的机制的先决条件。在这项研究中,基于24 AH商业LI(Ni 0.6 CO 0.2 MN 0.2)O 2 /Graphite软包电池,不同的电荷状态(SOC)阴极和阳极材料的热量生产特性,分离器,电解质及其组合,并使用不同的扫描量表来研究电池的组合。结果表明,负电极和电解质之间的反应是热失控的早期热量积聚的主要模式,当热量积累导致温度达到一定的临界值时,触发正极电极和电解质之间的暴力反应。电池托管材料的热量生产行为的程度和时机与SOC密切相关,并且在电解质含量有限的情况下,正极和负电极与电解质反应之间存在竞争关系,导致不同的社会电池具有不同的热量生产特性。此外,上述发现通过电池单体的加热实验与电池故障机制相关。本文对主要材料的电热特性的研究提供了一种策略,以实现预警和抑制电池中热失控的策略。
电池是对完整电动汽车(EV)的成本和环境足迹产生重大影响的组件。因此,有强大的动力可以最大化其利用率。用法限制由电池管理系统(BMS)执行,以确保安全操作并限制电池降解。限制往往是保守的,以说明电池状态估计的不确定性以及由于老化而导致的电池特性变化。为了提高利用率,需要对衰老敏感的电池管理。这是指管理策略,该策略是a)根据其状态调整电池期间的寿命,b)根据特定应用程序的要求平衡利用率和退化之间的权衡。在最新的电池安装中,仅测量了三个信号;电流,电压和温度。但是,必须估计的其他州(例如其最先进的(SOC)或局部浓度和潜力)对电池的行为进行了政府。因此,BMS依靠模型来估计状态并执行控制动作。为了实现点a)和b),必须在船上更新用于状态估计和控制的模型。更新的型号还可以实现诊断电池的目的,因为它反映了电池老化电池的变化。本论文研究了从操作EV数据中识别电化学和经验蝙蝠模型的鉴定。此外,IT研究了基于模型的最佳和自适应快速充电策略。工作分为四个主要研究。1)在驾驶数据上鉴定了经验线性参数变化(LPV)动态模型。模型参数是作为测得的温度,电流幅度和估计的开路电压(OCV)的功能提出的。处理电池电压响应的时间尺度差异,采用了连续的时间系统识别。我们得出的结论是,与离散和时间不变的对应物相比,所提出的模型具有较高的预测能力。2)对高阶电化学模型的参数进行了全局灵敏度分析。用实际电动汽车的测量电流曲线用作输入,并且评估了参数对建模细胞电压和其他内部状态的影响。研究表明,为了激发所有模型参数,需要高电流率,较大的SOC跨度以及更长的电荷或放电期的输入。这仅在电动卡车的数据集中存在,该电池组很少。来自带有更多包装(电动总线)和有限的SOC操作窗口(插电式混合动力卡车)的车辆的数据集激发了更少的模型参数。3)我们还投资了设计充电电流以增加其有关模型参数的信息内容,而不是使用驱动数据来参数化模型。这是在频域中作为最佳实验设计问题的提法。基于等效电路模型(ECM)状态优化了对衰老敏感的快速充电过程。最后,结合最佳快速电荷和
随着电动汽车(EV)的采用加速,对生命后锂离子(Li-ion)电池的有效管理成为一个紧迫的关注点。此案例研究调查了重型车辆行业领先的制造公司内的锂离子电池的可持续第二寿命方法。采用探索性方法,该研究评估了第二寿命应用的三种不同的循环方法:remanu构成,重新利用和重复使用。基于财务模型和可持续性指标,再制造成为公司最可行和环境可持续的战略。该研究还探讨了补充方法,例如重新利用用于较小功率应用的电池,并在大规模的储能系统(ESS)中重复使用它们。电池第二寿命的监管不一致被确定为广泛实施的重大障碍。这项研究结束了,提倡多利益相关者生态系统方法,并呼吁制定普遍的循环法规来简化锂离子电池的第二寿命。
要在清洁运输计划下获得资金,必须与CEC年度清洁运输计划投资计划更新一致。The CEC issued GFO-20-601, Blueprints for Medium- and Heavy-Duty Zero-Emission Vehicle Infrastructure to identify actions and milestones needed for implementation of medium- and heavy-duty (MD/HD) zero-emission vehicles (ZEVs) and the related electric charging and/or hydrogen refueling infrastructure in order to accelerate the deployment of MD/HD Zevs和Zev基础设施具有整体和未来的运输计划观点。响应GFO-20-601,收件人提交了一项申请,该申请是在CEC在2021年4月8日提议奖励通知书中提出的,该协议于2021年10月8日以ARV-21-033执行。
摘要。电池管理系统在电动汽车中起着至关重要的作用。电池的充电和排放不当会改变电池的化学特性,从而降低其寿命。电池充电状态(SOC)是设计电池管理系统的重要参数。在其标称温度上方操作电动汽车电池会导致电池爆炸,这可能会导致人类损失。因此,必须正确监控电池的温度。为了减少电池的排放深度,基于SOC的充电控制器在Arduino和开发的控制算法的帮助下设计。当电池的SOC低于阈值时,该开发的算法会停止电动汽车的运行,并在电池温度超出标称范围时发出警报。这确保了电动汽车中锂离子或锂聚合物电池的安全和正确处理。
过去几年的电气市场不断增长。为了确保未来为电动汽车生产新电池的原材料供应,必须估计对电池金属的未来需求。本研究的重点是通过考虑不同的技术和增长情况,对电动汽车电池阴极原材料原材料,钴,镍和锰的需求。结果表明,在2040年,电动汽车中锂离子电池锂,钴和镍的未来材料需求超过了当前的原料生产。根据增长和技术情景,对锂和钴的未来需求在2040年的生产中超过了8次。镍在一种情况下超过了当今的作品。对于锰而言,2040年的未来需求仍然远低于当今的作品。锂和镍的回收量是2040年对锂离子电池的原材料需求的一半以上。对于钴,回收潜力甚至超过了2040年的原材料需求。总而言之,对于该行业来说,大规模扩大资源生产并专注于将来电池金属的回收,以满足电池越来越多的消耗量的挑战。