•超导率:超导体,超导体类型,重要关系,公式,常见问题解答。在线。2014。dostupnéZ:https://testbook.com/physics/superconductivity。[cit。2024- 06-18]。•史密斯,J.L.,Brooks,J.S。,Fowler,C.M。等。YBCO的低温临界场。 J SuperCond 7,269–270(1994)。 https://doi.org/10.1007/bf00724550•Grissonnanche,G.,Cyr-Choinière,O.,Laliberté,F。et al。 直接测量丘比特超导体中的上临界场。 nat Commun 5,3280(2014)。 https://doi.org/10.1038/ncomms4280•有史以来24个最伟大,最秘密的笑话。 在线。 in:https://www.pinterest.co.uk/。 Neznamy。 dostupnéZ:https://testbook.com/physics/superconductivity。 [cit。 2024-06-18]。 •应用高温超导体的材料方面图 1。 在线。 in:https://www.researchgate.net/。 2003。 dostupnéZ:https://www.google.com/url?sa = i&url = https%3A%3A%2F%2F%2FP下profestuc_fig1_1936761&psig = aovvaw2vtgzutgw5o_fmh8n5aonn&ust = 1718712912156 000&source = source = images&cd = vfe&opi&opi = 89978449&ved = 0ca8qjrjrjraya quotcljhaaa daaaaabae。 [cit。 2024-06-18]。YBCO的低温临界场。J SuperCond 7,269–270(1994)。https://doi.org/10.1007/bf00724550•Grissonnanche,G.,Cyr-Choinière,O.,Laliberté,F。et al。直接测量丘比特超导体中的上临界场。nat Commun 5,3280(2014)。https://doi.org/10.1038/ncomms4280•有史以来24个最伟大,最秘密的笑话。在线。in:https://www.pinterest.co.uk/。Neznamy。 dostupnéZ:https://testbook.com/physics/superconductivity。 [cit。 2024-06-18]。 •应用高温超导体的材料方面图 1。 在线。 in:https://www.researchgate.net/。 2003。 dostupnéZ:https://www.google.com/url?sa = i&url = https%3A%3A%2F%2F%2FP下profestuc_fig1_1936761&psig = aovvaw2vtgzutgw5o_fmh8n5aonn&ust = 1718712912156 000&source = source = images&cd = vfe&opi&opi = 89978449&ved = 0ca8qjrjrjraya quotcljhaaa daaaaabae。 [cit。 2024-06-18]。Neznamy。dostupnéZ:https://testbook.com/physics/superconductivity。[cit。2024-06-18]。•应用高温超导体的材料方面图1。在线。in:https://www.researchgate.net/。2003。dostupnéZ:https://www.google.com/url?sa = i&url = https%3A%3A%2F%2F%2FP下profestuc_fig1_1936761&psig = aovvaw2vtgzutgw5o_fmh8n5aonn&ust = 1718712912156 000&source = source = images&cd = vfe&opi&opi = 89978449&ved = 0ca8qjrjrjraya quotcljhaaa daaaaabae。[cit。2024-06-18]。
摘要:本文提出一种结合卷积神经网络(CNN)和长短期记忆神经网络(LSTM)的混合神经网络(HNN)来提取材料的高级特征用于超导体的临界温度(T c)预测。首先,通过从材料计划(MP)数据库中获取73,452个无机化合物并构建原子环境矩阵,通过对原子环境矩阵进行奇异值分解(SVD)得到87个原子的向量表示(原子向量)。然后,利用所得原子向量按照超导体化学式中原子的顺序实现超导体的编码表示。使用12,413个超导体训练的HNN模型的实验结果与三种基准神经网络算法和多种机器学习算法进行了比较,采用了两种常用的材料表征方法。实验结果表明,本文提出的HNN方法能有效提取超导体原子间的特征关系,对T c 的预测具有较高的准确率。
量子纠缠是一种以距离分离的量子状态之间非局部相关性为特征的现代物理学中的基本现象,它不仅在量子信息理论中,而且在高能量物理学,凝结物质理论和重力理论中都引起了广泛的关注。在量子场理论(QFT)中,量子纠缠的各种度量已被证明是表征和分类物质不同阶段的必不可少的工具,尤其是托管阶段[1,2],同时还捕获关键系统中的普遍缩放行为[3-6]。此外,量子纠缠通过全息原理[7,8]发现了与引力物理学的意外联系,从而对时空的复杂结构产生了新的视角,包括那些管理黑洞物理学的那些,以及QFT的非扰动方面。(有关评论,请参见[9-13]。)纠缠r´enyi熵(ERE)是量化量子系统不同部分之间共享的量子纠缠量的主要度量之一。它们是对
植物生长和性能的条件非常复杂。尽管温度及其对骨骼农作物的影响是该项目的重点,但农作物的生长和产量受到其他降至其他因素的显着影响,例如值(包括日长度),降雨量(数量和燃料),风(降雨量),风(Direcfion和velocity and velocity and velocity)以及Co 2 Conconrafion。其他植物生长和性能因素包括土壤(水分含量,结构,质地,营养等)和害虫,疾病和杂草。温度对围培养作物的生长,发育和产量(包括产品质量)具有显着影响。因此,温度在大多数嗜植物的种植的地方都具有很大的作用,并且这些作物的性能(可销售的产量和质量)(Krug,1997)。
该方程式表明临界温度𝑇𝑇与同位素质量的平方根成反比。例如,如果同位素的质量增加一倍,则临界温度将降低大约√2。[历史背景同位素效应首先是由伊曼纽尔·麦克斯韦(Emanuel Maxwell)和C.A.独立观察到的。雷诺和他的合作者。他们发现当使用不同的同位素时,汞的临界温度发生了变化。具体来说,当使用汞的较重同位素时,临界温度会降低。此观察结果至关重要,因为它表明晶格振动(声子)与超导状态有关。由于晶格的振动频率取决于原子的质量,因此同位素质量的变化会影响这些振动,因此,超导性能。]
对2D超导体的最新实验允许表征临界温度和跨BCS-BEC交叉的相位图作为密度的函数。我们从这些实验中获得了低温下超导状态的微观参数,通过BCS平均场接近。对于Li X Zrncl,提取的参数用于评估超导相位刚度和BEREZINSKII-KOSTERLITZ-thouless-thouless(BKT)临界温度,通过实现相应的重新分配组(RG)方法,整个BCS-BEC交叉中的临界温度。通过这种方式,我们对BKT理论的预测能力进行定量测试,以评估临界温度。RG流动方程证明对相位刚度和临界温度的重大重新归一化,这对于获得BKT理论与实验之间的令人满意的一致性至关重要,尤其是在BCS-BEC交叉方面。我们预测温度范围可以在BCS-BEC跨界的Li X Zrncl中测量相位刚度重归于。与其他超导性的其他微观理论相反,我们发现可以利用BKT理论来定量评估不同配对方案中2D超导体的临界温度。