1斯坦福材料与能源科学研究所,SLAC国家加速器实验室,Menlo Park,CA 94025,美国2美国2号物理系,斯坦福大学,斯坦福大学,加利福尼亚州斯坦福大学,美国3美国3号应用物理系,斯坦福大学,斯坦福大学,斯坦福大学,斯坦福大学,加利福尼亚州斯坦福大学,美国加利福尼亚州94305,美国40年5月5日,美国40号。固体化学物理研究所,01187德国,德国6卡夫利研究所,位于康奈尔大学康奈尔大学,康奈尔大学,康奈尔大学,纽约,纽约,14850,美国 *使用外延菌株以薄膜形式以薄膜形式的环境压力超导性。最近,在压缩的双层镍薄膜中已经观察到超导性的迹象,其起源温度超过40 K,尽管具有宽阔和两步状的过渡。在这里,我们报告了压缩性的LA 2 PRNI 2 O 7薄膜中的内在超导性和正常状态转运性能,这些薄膜通过等值的PR替代,生长优化和精确的Ozone退火来实现。超导的开始发生在48 K以上,零电阻达到30 K以上,而在1.4 K时的临界电流密度比以前的报告大100倍。正常状态电阻率表现出二次温度依赖性,指示了费米液体行为,而其他现象学相似性与过度库酸酯中的运输相似,这表明其新兴特性的相似之处。
引言在过去十年中,我们观察到了基于超导体的量子计算平台的快速发展[1,2]。的确,拥有400多个超导码头的量子计算机现在是现实[3]。量子计算机的实现涉及将约瑟夫森结与其他量子限制的超导组件(例如读取线和参数放大器)的整合。要在量子限制下运行,超导电路组件需要满足有关组件S的物理(例如比例和维度),电气(例如临界电流和连接电容)和功能特性(例如,谐振频率和偶数效率)的某些要求。因此,包括组件要求,设计环境和设计规则检查的精确制造指南对于生成功能性超导量子计算机设备至关重要。制造指南与过程设计套件(PDK)相关。PDK不仅包含有关制造过程中使用的所有掩模层的一组规则,还包含铸造厂提供的基本组件库,以促进设计过程。此外,PDK环境还提供自动设计规则检查(DRC),以确保未违反铸造规则。例如,它包括检查指定层或两个不同层之间的间距允许的最小宽度的规则。PDK组件库提供参考设计和/或参数化的单元格(P细胞),以帮助设计师以时间效率的方式构建其布局。PDK中有更多组件,但是本文的重点将放在P细胞或布局设备上。PDK。在这份白皮书中,我们简要概述了SIEEMENS L-EDIT内置的超导组件PDK [4],用于Star Cryoelectronics的制造过程[5]。我们首先提供了不同超导设备的简要概述,然后对L-Edit的描述进行了描述,并讨论了如何在L-Edit中使用Caliber执行DRC。接下来,我们介绍为星际冷冻电子制造过程创建的各种固定和自动化的参考设计单元。最后,我们讨论了如何使用L-EDIT中的Coplanar波导(CPW)执行自动路由。
从而大幅节省房地产和基础设施。此外,紧凑性还会降低给定光束强度的光束存储能量,这是高能、高亮度机器中的一个重要问题。最后,超导性也是通过两个复合过程降低加速器功耗并因此降低运行成本的一种手段:通过使其变得更小(上述紧凑性论点),以及通过降低电磁铁单位长度的功率。超导同步加速器的功耗本质上是低温制冷的功耗,它与机器的周长成比例,而与磁铁中的磁场无关。 LHC 的主要技术要点是研发、工业化生产 1232 个超导偶极子(场强为 8.3 T)、400 个超导四极子(梯度为 223 Tm -1 )和数千个其他超导磁体,这些超导磁体用于校正主场误差、调整束流参数和使束流在高亮度下发生碰撞 [3]。所有这些磁体均由工业制造,能够重复产生正确强度和均匀性的场,精度高达 10 -4 。主偶极子(图 1)具有双孔径,具有相等且相反的场,以便沿平行路径弯曲两束反向旋转的质子或离子束。两组相同的线圈组装在一个通用的机械和磁性结构中,并安装在一个低温恒温器内。这种解决方案在横向空间占用方面既紧凑又高效,因为一个孔径的杂散场由磁轭引导,会对相邻孔径的场产生影响。每个孔径中的线圈都用卢瑟福型 Nb-Ti 电缆缠绕,分为两层,电流密度分级,遵循“cos θ”几何形状。当磁体通电时,巨大的电磁力往往会打开结构,而非磁性奥氏体钢的刚性环会对此作出反应,这些环位于磁性钢轭上。整个组件包含在一个奥氏体不锈钢压力容器中,该容器充当氦气外壳。随着磁场的增加,超导体的临界电流会降低,这限制了它们在高场应用中的使用。这严重限制了众所周知的 Nb-Ti 合金在 4.2 K 的正常沸腾氦气中的使用。更先进的超导体,如 Nb 3 Sn
简介。在非中心对称超导体[1]中的磁性电源最近引起了极大的关注,尤其是在其在非核心超导反应中的实验应用中[2],例如,如最近的综述[3-6]。特别是,Edelstein磁电效应是由应用超电流引起的自旋极化的产生,而其反场景是二极管效应,即,在两个相反的方向上,临界电流是不同的,在存在外部磁性的情况下会产生的两个相反的方向。这些现象的根本原因之一是违反了由旋转轨道相互作用或不均匀的磁性交换场引起的空间反演象征,该磁性磁性交换场是对能量依赖的动量旋转分裂的作用[7-9],所有这些[7-9]都引起了电子旋转旋转极化之间的耦合和电荷之间的耦合[7]。在本文中,我们考虑了一个具有d-波对称性的共线抗磁性(AFM)订购参数的中心对称金属[11-14]。这种AFM阶诱导了传导费米子的费米表面的特定D波动量依赖性旋转分裂[7-9]。最近在参考文献中审查了各向异性磁顺序的扩展对称分类。[15 - 17]。显示此功能的代表性材料包括,例如,类型AFMS:金属RUO 2,Mn 5 Si 3,VNB 3 S 6,半导体MNTE等[15-20]。此外,最近在thinfms ruo 2中观察到了应变稳定的超导性,tc≈1。[31]。8 K取决于纤维厚度[21-23]。受到最近的实验进展的促进,对超导性的D-波AFM交换耦合的理论研究成为了一个密集的研究领域,包括对Andreev反射的研究和Josephson Current [24-28],在D -Wave Superconcontos in D -Wave Superconcontos ft d -Wave af -Wave afm [29]中的无综合状态[29],或者是30岁的MAD [29],或者有关最近的精彩文章,请参见参考文献。在这种情况下,超导性和磁性的问题自然出现。清楚地,在肌脱肌对称超导体中,与极性超导体中的Edelstein效应相反,诱导的载体的自旋极化与超循环的均匀功能成正比,并表现出D -Wave对称性。
基于超导电路的超导量子比特由超导电容器和具有 transmon 几何的约瑟夫森结组成,广泛应用于高级量子处理器,追求可扩展的量子计算。transmon 的量子比特频率的调整依赖于超导环路中两个超导体-绝缘体-超导体 (S-I-S) 约瑟夫森结的超电流之间的磁通量相关干扰。基于超导体-半导体-超导体 (S-Sm-S) 材料的约瑟夫森结为门可调 transmon 提供了一种可能性,称为“gate-mon”,其中量子比特频率可以通过静电平均值进行调整。在 III-V 材料平台上实现的 gatemon 显示出 transmon 替代品的令人瞩目的发展,但在可扩展性方面仍然存在一个大问题。硅锗 (SiGe) 异质结构由于其高空穴迁移率和 Ge-金属界面的低肖特基势垒而成为承载混合器件的潜在平台之一。此外,与硅基半导体行业的兼容性是扩大量子比特平台的一个有力优势。在本论文中,我们基于 SiGe 异质结构中的 Al-Ge-Al 约瑟夫森结开发了门控。首先,建立了自上而下方法中约瑟夫森场效应晶体管 (JoFET) 的稳健制造配方。我们对 JoFET 进行了详尽的测量,以研究它们随栅极电压、温度和磁场变化的特性。这些器件显示了临界电流 (I C ) 和正常态电阻 (R N ) 的栅极可调性。估计这些器件具有高透明度的超导体-半导体界面,SiGe异质结构上的高 I C R N 乘积证明了这一点。在有限电压范围内,观察到对应于多个安德烈夫反射 (MAR) 的特征。然后,我们在 SiGe 异质结构上制造和表征氮化铌 (NbN) 超导谐振器。我们在传输模式下测量谐振器,并从传输系数 (S 21) 中提取谐振频率 (f r)、内部品质因数 (Q i) 和耦合品质因数 (Q c)。随后,我们开发了制造工艺,将与电容器分流的 Al-Ge-Al 结(换句话说,gatemon)集成到谐振器方案中,并根据设计进行制造。我们在其中一个制造的 gatemon 中演示了反交叉特性。使用双音光谱技术映射门控器的谐振频率,发现它是门可调的。量子位具有较大的光谱线宽,这意味着相干时间较低。此外,我们对超导量子干涉装置 (SQUID) 几何中的结进行了电流相位关系 (CPR) 测量。我们可以证明结构成非正弦 CPR。此外,在辐照结的电流-电压特性曲线中观察到整数和半整数 Shapiro 阶跃。这表明我们的结具有 cos 2 φ 元素,这可以为受保护的量子位开辟另一种可能性。