英国在COP29的存在很强。公告2035年全国确定的贡献(NDC)排放量将至少低于1990年的81%降低,这与气候变化委员会的建议一致,这是一份明确的意图声明。在COP期间,国际合作伙伴受到了广泛的欢迎。该公告是基于迄今为止英国排放减少的记录,包括在过去十年中通过英国煤炭发电和以市场驱动的可再生能源部署的方式逐步脱碳的快速进步。《 2008年英国气候变化法》对这一进展的基础,碳预算得到了广泛认可,并且越来越多地在其他国家复制。现在有20多个国家使用气候变化咨询委员会来支持其政府,并通过国际气候委员会(ICCN)共享知识。
。CC-BY-NC 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2024 年 12 月 6 日发布了此版本。;https://doi.org/10.1101/2023.08.16.553626 doi:bioRxiv 预印本
无处不在的真实材料无处不在,可能会对量子相跃迁产生巨大影响。源自该疾病增强的量子波动,量子格里菲斯(Griffiths)奇异性(QGS)已被揭示为低维超导体的量子关键性的普遍现象。然而,由于波动效应较弱,在三维(3D)超导系统中检测实验的QGS非常具有挑战性。在这里,我们报告了与从3D超导体到Anderson临界绝缘体MGTI 2 O 4(MTO)中量子相过渡相关的QGS的发现。在垂直磁场和平行磁场下,在接近量子临界点时的动力学临界指数会发散,证明存在3D QGS。在3D超导体中,MTO显示出相对强大的波动效应,其特征是广泛的超导过渡区域。增强的波动可能是由安德森本地化的迁移率边缘引起的,最终导致发生3D量子相变和QGS。我们的发现提供了一种新的观点,可以理解强烈无序的3D系统中的量子相变。
在英国生命科学领域,药品制造业是经济活动中最大的份额,并在英国提供高质量的就业机会,包括在经济繁荣的地区1。英国的医学制造能力提高带来了在英国部分地区创造更多高质量的工作的潜力,在英国,旧制造业的工作没有被类似薪水良好的安全工作所取代。药品制造业在战略上对英国的国家韧性也很重要,因为它代表了英国通过改善药物的机会提供更好医疗保健的能力的关键要素,并应对与健康相关的挑战做出反应,例如气候变化和新的大流行威胁所带来的风险增加,而新的大流行威胁2。最近通过牛津/阿斯利康疫苗的开发及其在解决Covid-19-19大流行中的重要作用来说明这一点。
预印本(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此版本的版权所有者于 2024 年 11 月 25 日发布。;https://doi.org/10.1101/2022.12.14.519751 doi:bioRxiv 预印本
我们考虑具有多组分(n f> 1)退化标量字段的三维(3D)晶格su- ncÞ量表高度的理论,而u - nfÞ全球对称性,重点介绍了具有NC¼2的系统,以确定相应地描述的关键行为,以确定相应的3D s s s s cy ggg hig的关键行为。RG流的现场理论分析使人们可以识别出大量N F值的稳定带电的固定点,该值将控制以全局对称性模式u - nfÞ→Suð22 u - u - u - u - uðd-ðnf-2Þ的过渡。在Nf≥30的SU(2)晶格量规模型中观察到具有相同对称性模式的连续过渡。在这里,我们提供了几个较大值N f的蒙特卡洛数据的详细有限尺寸缩放分析。结果与在很大的限制中获得的现场理论预测有很大的一致。这提供了证据表明,suðncÞ量规Higgs田间理论提供了正确描述3D大n f连续过渡和无序阶段之间的连续过渡,在其中,风味对称性突破至Suð22 su-2Þ⊗u - u - u - u - u - u - u - n f-2Þ。因此,至少对于足够大的n f,具有多组分标量字段的3D su- ncÞ量规Higgs字段理论可以通过具有相同局部和全局对称性的晶格模型的连续性限制来定义。
摘要:本文提出一种结合卷积神经网络(CNN)和长短期记忆神经网络(LSTM)的混合神经网络(HNN)来提取材料的高级特征用于超导体的临界温度(T c)预测。首先,通过从材料计划(MP)数据库中获取73,452个无机化合物并构建原子环境矩阵,通过对原子环境矩阵进行奇异值分解(SVD)得到87个原子的向量表示(原子向量)。然后,利用所得原子向量按照超导体化学式中原子的顺序实现超导体的编码表示。使用12,413个超导体训练的HNN模型的实验结果与三种基准神经网络算法和多种机器学习算法进行了比较,采用了两种常用的材料表征方法。实验结果表明,本文提出的HNN方法能有效提取超导体原子间的特征关系,对T c 的预测具有较高的准确率。
在不耗散能量的情况下进行电流的能力是超导体的特性,用于在核融合1和航空中用于医疗保健,自然科学和持续的全球项目中使用的磁系统。最高耗散电流被称为临界电流,这是超导体的主要实际特性之一(以及临界电流密度J C)。最近,Goyal等人2在4.2 k In(Re)BCO膜时报告了创纪录的高J c〜190 mA/cm 2,超过了最佳商业(RE)BCO电线中最高的J C,高出5倍。基于此高J C的巨大潜在实际影响,我们检查了原始的实验数据2,发现该高值源于单位转换的错误。真正的J C比报告的J C小10倍,与许多制造商当前达到的值一致。
这项研究研究了跨临界二氧化碳(CO 2)循环与常规地热双闪光循环的整合,以提高各种入口温度(225°C,250°C,275°C)的能量和充电效率。尽管地热双重闪光周期和CO 2跨临界周期都因其高效率和可持续性而被认可,但在不同的热条件下解决其合并性能的全面比较分析仍然很少。为了弥合这一研究差距,开发了一个详细的计算模型,以评估在各种操作场景下基础和集成系统的热力学行为。结果表明,集成系统在能源效率方面产生显着提高,基本周期为0.112、0.1265和0.1383,相比0.08436、0.1038和0.1197。exergy分析揭示了在较高温度下的潜在热效率挑战,因此需要进一步优化。该研究还探讨了分离器压力变化对系统性能的影响,这表明精确的压力管理可以大大增强功率输出。调查结果倡导更广泛地采用综合地热系统,强调了它们的潜力,以实质上提高可再生能源生产的效率,并提出了用于系统优化和环境影响评估的未来研究的途径。