摘要:本研究旨在通过理论和实验研究来扩展对 3.2 mm 厚 Ti-6Al-4V 合金多层壁直接激光沉积 (DLD) 过程中应力场演变的理解水平。工艺条件接近于通过 DLD 方法生产大尺寸结构的条件,因此样品具有相同的热历史。开发了一种基于隐式有限元法的模拟程序,用于应力场演变的理论研究。通过使用实验获得的 DLD 处理的 Ti-6Al-4V 合金的温度相关力学性能,模拟的准确性显著提高。通过中子衍射实验测量了堆积中的残余应力场。使用平面应力方法和力-动量平衡确定了对测量应力具有决定性的无应力晶格参数。分析讨论了残余应力场不均匀性对实验测量精度和模拟过程有效性的影响。基于数值结果发现,全厚度应力分布的不均匀性在中心横截面达到最大值,而在堆积端部,应力分布几乎均匀。靠近基体的堆积端部主应力分量为拉应力。此外,计算出的等效塑性应变在堆积端部附近达到5.9%,此处沉积层已完成,而塑性应变实际上等于实验测量的DLD加工合金的延展性,即6.2%。通过力-动量平衡和平面应力方法获得的实验测得的残余应力略有不同。
摘要:弹塑性分析是获取围岩力学特性的重要方法,但选择合理的分析方法却是一个难题。为探究围岩本构关系与屈服准则分析方法之间的差异,采用双线性本构关系与统一强度准则分析方法,对淮南煤业集团谢义矿王峰岗井−817 m 灭火材料仓处巷道围岩应力分布与变形特征进行分析,对比2种分析方法的计算结果,探讨原岩应力与支护阻力作用下巷道围岩塑性区半径与位移的演化规律。结果表明:与统一强度准则分析法相比,双线性本构关系分析法避免了中间主应力系数对结果的影响,切向应力分布曲线平滑。计算得到的隧道塑性区半径和周边位移分别为 4 365 m 和 87 373 mm,均大于统一强度准则分析方法的计算值。应力差是影响隧道围岩力学特性的主要因素,当应力差由 20.4 MPa 减小到 16.4 MPa 时,隧道塑性区半径和周边位移分别减小了 0.697 m 和 26.73 mm。研究为隧道围岩弹塑性分析方法的实际选择提供了理论参考。 关键词:双线性本构关系;弹塑性分析方法;应力差;隧道围岩;统一强度准则 1 引言
第一学期 AS 1010 航空航天工程概论 2 0 0 2 航空航天和航天飞行的历史;飞机和航天器的分类;飞机和航天器主要部件的功能;航空航天工程的细分;空气动力学、推进、结构、系统、飞行力学和控制要素。印度航空航天活动。 第三学期 AS 1020 流体力学 3 1 0 4 流体力学简史,流体及其性质,粘度、热导率、质量扩散率、压缩性和表面张力的概念,其分子考虑。流体静力学 - 压力中心、浮力中心和元中心,ISA。张量微积分(笛卡尔张量)。描述流体运动的欧拉和拉格朗日方法、流线、条纹线和路径线。流体运动学 - 平移、旋转和变形、循环、格林斯托克斯定理。推导微分和积分形式的质量、动量和能量控制方程及其对无粘性和势流的特殊化。非惯性系中的方程。伯努利方程。一维流动。各种情况下的说明性示例。层流,例如库埃特流和哈根-泊肃叶流,轴承和边界层中的流动。量纲分析平板和管道中的粘性流 - 过渡、湍流、管道中的表面摩擦和损耗 AS 2010 材料基础强度 3 1 0 4 应力和应变简介 - 胡克定律、应力和应变变换、主应力和应变 - 圆形截面的扭转 - 薄壁压力容器 - 对称截面梁的弯曲和剪切应力 - 用各种方法计算静定梁的挠度 - 组合载荷引起的应力、失效理论。弹性理论简介、场方程、艾里应力函数、笛卡尔坐标中的二维问题、厚圆柱体的拉梅解。
目的本课程的目标是学习如何在力学中使用高级数学工具,学习如何在可变形的身体,流变学响应中构建复杂应力 - 应变状态的物理和数学模型,并学习如何设计静态多样化的不确定的结构。在本课程中,学生将获得以下能力:能够在力学中使用高级数学工具,能够在可变形物体中构建复杂应力 - 应变状态的物理和数学模型,设计静态地倍增不确定的结构。计划遵循和完成课程的计划义务;相关研究文献的介绍;课程主题的概述; 3D连续体的概念;凯奇(Cauchy)对应力矢量,正常和剪切应力的定义,在变形体中有限体积的静态平衡,考奇(Cauchy)的压力定理;应力张量(Cauchy,第一Piola-Kirchhoff,第二个Piola-Kirchhoff,Biot等。学习成果);应力张量的偏离和静水部分;主应力和3D中的最大剪切应力;压力张量和压力张量偏离部分的不变性;菌株理论;位移载体,变形梯度,变形张量,小/有限菌株理论;小应变张量的几何解释;应变的兼容条件;由于外部载荷引起的弹性应变能;能量方法,每单位体积的应变能密度;虚拟工作的原则;理想情况是弹性材料,绿色弹性;物质各向异性;各向同性,线性弹性材料;从实验中确定材料常数;胡克定律,超弹性;体积和失真工作/能量;温度的影响; navier-lame方程;特定的应力应变状态;通风应力功能;使用FEM的计算机模拟;复杂的现实生活中的例子和案例研究的先决条件符合硕士机械工程研究计划的入学条件 - 研发计划。
