电池注意事项 o 电池使用不当会造成漏液、发热、爆炸等危险。请正确装入电池的 (+) 或 (-) 极。 o 更换 AAA 型电池时,请勿混用不同品牌、不同型号的电池,也不要将新旧电池混用。请同时更换四节电池。 o 长时间不使用相机时,请从相机中取出电池。旧电池容易漏液,从而损坏相机。请将取出的电池放在婴儿接触不到的地方。 切勿尝试分解或重新充电,也不要将用过的电池扔进火中,因为它可能会爆炸。 o 尽管不同类型的电池性能不同,但在低温下电池的性能可能会降低。 o 在户外或旅行时,请随身携带备用电池以方便使用。 o 将相机放在包中时,请确保主开关处于关闭状态;否则,意外按下快门按钮可能会消耗电池电量。
图 5 显示了典型的开关模式。5 V 和 12 V 输出接收不同数量的能量包。主控制方案有效地消除了交叉调节效应,即一个输出上的负载会影响其他输出。但是,这种方法的一个明显缺点是会产生可听见的噪声。在每个周期中,都会向其中一个输出发送一个能量脉冲,由于每个输出具有不同的反射电压,因此变压器磁芯中磁能变化的速度也会根据哪个输出接收能量而变化。这种磁能变化将引起次谐波变压器激励频率,该频率低于主开关频率。该次谐波频率的性质取决于两个输出之间的负载分布。如果该次谐波频率在可听见的范围内,大约在 1 kHz 和 25 kHz 之间,则很可能会产生可以听到的声音。磁致伸缩效应将被变压器质量的共振频率放大,该共振频率通常也位于此区域。这种可听见的噪声是开关模式在特定条件下运行方式的副产品。
摘要:光伏 (PV) 发电机是现代电网的重要组成部分。大多数 PV 系统利用各种最大功率点跟踪 (MPPT) 算法向公用设施注入最大可用功率。然而,在阳光明媚的日子里,持续获得最大功率会导致基于电力电子的 DC-DC 转换器的热应力增加和可靠性降低。本文提出了一种 DC-DC 转换器的热模型,该模型根据热传感器感测到的功率损耗和环境温度来评估累积温度。建议采用热控制策略将转换器主要组件的温度保持在允许的范围内。热控制包括两个阶段:初级阶段,调整 IGBT 开关的开关频率以降低累积温度;次级阶段,调整基于电流的 MPPT 算法以降低通过主开关的最大电流。这种方法旨在延长所用 DC-DC 转换器的使用寿命并降低其运营成本。此外,通过频率响应的稳定性分析确定开关频率变化的允许范围,使用闭环系统的波特图来评估频率响应的稳定性。所提出的热控制是在 MATLAB/Simulink 环境中实现的。相关结果证明了所提出的控制在将温度保持在可接受的范围内并从而提高系统可靠性方面的有效性。
抽象光是决定植物的整体生长和发展的重要环境提示。然而,基于光信号网络的分子机制被表观遗传机制掩盖,在该机械中,可逆的乙酰化和脱乙酰基化在调节光调节基因表达中起着至关重要的作用。在本文中,我们证明了HDA15通过脱乙酰化,蛋白质相互作用和亚隔室化来抑制光信号网络中的主开关。HDA15 T-DNA突变系表现出光性低敏,显着降低了HY5和PIF3转录水平,导致黑暗中的长羟基托型表型,而其过表达的HY5转录本升高和短核基表型。体内和体外结合测定进一步表明,HDA15在调节COP1的抑制活性的核内与COP1直接相互作用。与COP1-4突变体穿越HDA15-T 27导致短八核基和矮人的表型,让人联想到COP1-4突变体,表明COP1是HDA15的epissication。尽管光信号标志着HDA15的核细胞梭子穿梭,但COP1的存在会触发其核定位。提出了一个工作模型,阐明了在光和黑暗条件下HDA15和COP1之间的协同相互作用。
忠实于以前的每个iPhone系列迭代的选择,Apple再次选择了创新的射频(RF)前端模块(FEM)作为其旗舰。每年其忠实的供应商Broadcom/Avago都会提高过滤器和创新的包装技术,以与其他市场参与者竞争并维持其合同。今年第二次,Broadcom选择了双侧成型球网格阵列(BGA)包装与新的电磁干扰(EMI)屏蔽相结合,以启用具有频段共享的非常高密度的系统中的系统中包装(SIP)。在2020年,Broadcom仍然是最新版本的Apple iPhone系列12、12 Mini,12 Pro和12 Pro Max的唯一同一模块的供应商。与其前身AFEM-8100一样,AFEM-8200是中间和高频(MB和HB)的长期演化(LTE)和5G FEM。它具有多个模具,包括功率放大器(PA),硅启用器(SOI)开关和膜体积声音谐振器(FBAR)过滤器。过滤器仍在使用Avago的MicroCap键合晶圆块尺度包装(CSP)技术,其通过硅VIA(TSV)可启用电触点和掺杂型氮化铝(ALSCN)作为压电材料。对于此特殊版本,Broadcom在几个方面进行了创新。多亏了双侧成型BGA技术,包装的密度已增加。关键模具,主开关,电源管理集成电路(PMICS)和低噪声放大器(LNA)已经