机械系统中的减振和能量耗散是一个快速发展的领域(例如[ 1 – 5 ]。该领域的发展源于设计更严格的减振装置的需求。这些装置应满足生产更轻、更复杂的机械产品的需求。减振方法有很多种(例如[ 6 – 8 ]),最常见的类型是调谐质量阻尼器 (TMD),它是由 H. Frahm [ 9 ] 首次设计的。它是一个被动线性系统,由一个通过弹簧和阻尼器连接到主结构的质量组成。TMD 仅在较窄的频率范围内表现良好,然而,由于多种原因,主结构也可能以其他频率振动 [10]。为了解决 TMD 系统的局限性,已经提出了替代的减振方法。非线性能量吸收器 (NES) 是一种很有前途的减振装置,因为它能够在各种振动频率范围内工作。NES 系统通常由连接到主质量的次级质量组成,具有高度非线性刚度。Vakakis 和 Gendelman [11] 最近提出了一种 NES 系统。Younesian 等人。[12] 研究了 NES 系统在铁路桥梁减振中的应用。NES 系统抑制气动弹性不稳定性的能力已在 [ 13 ] 中得到证实。在 [ 14 ] 中,NES 系统的应用
位于卡胡卢伊机场的耗资 3.4 亿美元的新综合租车 (ConRAC) 设施是雄心勃勃的机场现代化计划的一部分,该计划旨在升级该州的机场,提高运营效率并改善旅客体验。卡胡卢伊机场 ConRAC 通过将大多数租车公司整合到一个最先进的建筑中并通过有轨电车连接到主要机场航站楼来实现这一目标。ConRAC 设施是一座三层建筑,包括部分地下室区域和小型封闭屋顶结构,用于楼梯出口和电梯进入屋顶停车区。该建筑总面积约为 190 万平方英尺,从一端到另一端近四分之一英里,包括 3,700 多个专供租车公司使用的停车位和 700 个供员工停车的停车位。此外,还有 72 个加油站、12 个洗车场和 11 个汽车租赁维修站。主结构采用现浇混凝土建造,柱子支撑后张拉梁和大梁,跨度分别为 60 英尺 x 40 英尺。梁以 20 英尺为中心间隔,提供规则且重复的框架系统以简化模板。结构板主要由单向后张拉板组成,通常为 5
STORT 是 DLR 的一个项目,专注于在相对较长的时间内测试高超音速飞行(马赫数高于 8)的关键技术。该项目的总体目标是支持降低未来太空运输系统的成本,同时保持其高度可靠性。为此,未来发射系统所有阶段的可重复使用性是先决条件。对于第一级,8-10 马赫数似乎是最佳分级速度,这意味着需要开发和验证以这些速度返回第一级飞行的技术。因此,STORT 旨在实现代表可重复使用第一级在 8 马赫时进行这种高能再入飞行的运行条件,以支持优化和验证未来太空运输系统开发技术和模拟工具。因此,本文描述了火箭前体组件的设计、制造和集成,直至发射。此外,还概述了从热保护系统传感器收集的飞行数据。前机身热保护系统需要使用陶瓷基复合材料来保护机身免受飞行过程中的高热负荷。在本例中,热保护系统由 DLR 内部制造的 C/C-SiC 复合结构组成。主要元件是一个锥形机头元件和四个通过碳纤维纤维缠绕制造的薄壁壳体段。通过现场连接工艺,由 CMC 材料制成的整体固定支架永久固定在壳体上。连接热保护系统结构的底层前机身主结构由铝制成。
摘要:随着立方体卫星执行复杂和先进任务的能力不断提高,它们正被考虑用于诸如星座之类的任务,这些任务需要很高的开发效率。从卫星接口的角度来看,通过实施灵活的模块化结构平台,可以最大限度地提高生产率,从而在集成和测试阶段轻松实现可重构性。因此,立方体卫星的结构设计在促进卫星集成过程中起着至关重要的作用。在大多数情况下,在主负载支撑结构和内部卫星子组件之间实施的机械接口通过增加或减少复杂性来影响卫星集成的速度和效率。大多数立方体卫星结构设计使用堆叠技术,使用堆叠杆/螺钉将 PCB 安装到主结构上。因此,内部子系统是相互连接的。观察到这种传统的接口方法增加了结构部件的数量,同时增加了集成过程中的复杂性。在这项研究中,基于插槽概念开发了灵活的 3U 和 1U 立方体卫星平台。这种创新的安装设计提供了一种将 PCB 安装到插槽中的简单方法。评估并验证了该概念在批量生产应用中的可行性。进行了计数和复杂性分析,以评估所提出的设计与传统类型的结构接口方法。评估表明,这一新概念显著提高了批量生产过程的效率。
摘要:基于模板和添加剂制造技术已经证明了一些用于创建气动软执行器的制造路线。然而,随着执行器的复杂性和能力继续发展,这些方法的局限性变得越来越明显。其中包括用于设计变化,过程速度和分辨率,材料兼容性和可扩展性的困难,这妨碍了和限制技术的可能功能及其从研究到行业的过渡。这项工作提供了一种具有不同方法的计算机控制,无面罩的制造工艺,可以允许高速,低成本和灵活的气动软软驱动网络的高速创建,包括多主结构。通过定制的制造平台对此进行了研究,该平台提供了计算机控制的局部等离子体处理,以选择性地修改有机硅和聚对苯二甲酸酯(PET)体的化学行为。改变的表面化学促进了表面处理部分之间的选择性键形成,因此,对形成的气动室的设计变化和控制更大。选择性治疗模式允许创建非线性气动室设计,并且显示键合硅结构的强度可促进执行器中的大变形。此外,利用血浆和有机硅之间的不同相互作用,以达到<1 mm的特征大小,并且暴露的治疗速度为20 mm 2。然后制造了两个多物质气动软致动器,以证明平台作为软执行器的自动制造途径的潜力。
抽象空间动力卫星(SPS)是在太空中利用太阳能的巨大航天器。由于规模巨大,巨大的质量和高力量,因此存在许多技术困难。对于GW SPS系统,太空中产生的电力将超过2 gW,太阳阵列的整个区域将是几平方公里。空间中的高功率发电,传输和管理成为一个巨大的挑战。在论文中,提出了MR-SPS概念的主要方案,并引入了两个重要的子系统,太阳能收集和转换(SECC),电力传输和管理(PTM)。SECC子系统包括五十个太阳能阵列。每个太阳能子阵列由十二个太阳阵列模块组成。每个太阳能阵列的面积约为0.12 km 2。太阳能阵列将电力传输到安装在MR-SPS主结构上的电缆,该电源通过100个中动力旋转接头。PTM子系统转换,传输和分发SECC子系统的输出电力。大部分电力传输到天线,并分布在天线中。剩余的电力将传输并分配给服务设备以进行SPS的操作。采用了分布式和集中式高压PTM的混合,以满足SPS上电动设备电源的需求。分析了典型的空间环境会影响高功率电动系统。需要研究和解决关键技术,包括高较高的,长寿的薄膜GAAS PV电池,超大型 - 高电压(500 V)太阳能阵列,高功率导电旋转式关节,超高电压(20 kV)电缆(20 kV)电缆,高较高的电池,高较高的乘积,较高的平台,较高的速度,以及较高的速度和较高的转换,以及及好的转换,以及。
数据分析师位置控制编号:DF1286 FLSA状态:n位置描述在一般监督下,该职位在识别,捕获,管理和分析与拘留和社区更正操作相关的确定数据点方面执行专门的技术工作。与具有从一个或多个系统收集数据领域的特定数据领域的部门人员的协调和合作,因此可以设计和维护主结构,以将收集的数据带到经理进行分析和相关的数据驱动调整对代理机构运营和战略规划的实施。与代理商管理和行政人员中等互动。准备已确定的报告。该机构的副董事之一监督了这一职位。工作进行了30%的数据收集和采矿。通过与其他员工的协作和协调,从多个机构系统中收集和挖掘数据。指导建立标准化协议,以收集和挖掘数据,以提高过程和结果的一致性和效率。30%数据分析。利用收集的数据和信息来识别,跟踪或预测特定的囚犯 /少年 /客户人口统计信息模式,结果(例如,累犯率),人口趋势以及程序化成功或失败指标。验证数据的可靠性和有效性。教育行政人员就数据,趋势和预测与人口信息相关的长期结果和需求进行教育。20%的数据报告。开发并维护标准化和专业的格式,用于报告部门管理的数据。指导该机构年度内部和外部报告的开发。进行了研究,撰写报告,并提供演讲以协助制定代理战略。10%的政策制定和合规性。有助于制定和审查影响机构数据收集,处理,存储,演示和分析的政策和程序。保持对与职位有关的适用机构政策的认识,并确保合规性。10%的特殊项目,分析和研究。根据组织的需求完成其他职责和特殊项目。协助捕获和呈现数据以支持代理赠款申请。将被要求参加与利益相关者的会议,以协助确定特殊项目或赠款计划所需的关键数据点。
索引 1.征集规则 ...................................................................................................................................... 6 2.每个 SPD 的主题数量和总指示性资金价值概览 ........................................................................ 7 3.主题摘要列表 ...................................................................................................................... 8 4.洁净天空 2 – 大型客机 IAPD ............................................................................................. 12 I.可靠且轻质的动力变速箱行星轴承的创新设计 ............................................................. 12 II.ALM 的下一代低压涡轮翼型 ............................................................................. 18 III.先进的发动机舱空气动力学优化 ............................................................................................. 24 IV.真实飞机的皮肤摩擦测量和基于光纤的飞机应用压力测量 ............................................................................................................................. 29 V. 嵌入式永磁机器的新型机械驱动断开装置 ............................................................................................. 35 VI.用于航空航天应用的 MW 级功率密集型电机的先进制造 ............................................................................................. 39 VII.开发用于 >1kV 航空航天应用的电力电子技术 .................................................................................. 43 VIII.脉动热管 (PHP) 建模和特性 ............................................................................................. 49 IX.快速断开系统 ............................................................................................................. 54 X.高性能发电通道集成 ............................................................................................. 59 XI.智能功率模块 ............................................................................................................. 65 XII.开发机身纵向和环向接头全尺寸自动化工厂系统 ...................................................................................................................................... 71 XIII.FMS 的创新验证方法和工具 ...................................................................................................... 88 5.设计和开发可在驾驶舱环境中实施的用于检测人类认知状态的智能传感器 ............................................................................................................. 82 XIV.洁净天空 2 – 区域飞机 IADP ............................................................................................................. 95 I.用于区域飞机机身筒地面演示器的全尺寸创新复合材料框架和剪切带 ............................................................................................................. 95 II.用于区域飞机机身筒地面演示器的全尺寸创新复合材料门、周围和子结构 ............................................................................................................. 104 III.用于区域飞机机身筒地面演示器的全尺寸创新复合材料窗框 ............................................................................................................................. 113 IV.区域飞机机身筒体地面演示器全尺寸创新复合材料乘客和货物地板网格 ................................................................................................................................ 123 V. 区域空调创新型一次和二次配电网络 ...................................................................................................................... 134 VI.主结构和大尺寸部件增材制造在操作层面的技术准备情况 ............................................................................................................. 141 6.清洁天空 2 – 快速旋翼机 IADP.................................................................................................................... 149 I.民用倾转旋翼机全尺寸高速空气动力学特性 ............................................................................................. 149 II.倾转旋翼机创新浮选方法(系统) ............................................................................................. 156
20 世纪 80 年代初,在海上靶场和空域警戒区 W-133/W-134 和 W-157A/W-l58C 进行了广泛的空战机动 (ACM) 训练,使用训练导弹和机枪对付无人机和拖曳目标。目标并未模拟真实的空战条件,即目标采取高性能飞机能够采取的所有规避行动。这些不是仪表空域,因此训练受到限制,因为无法进行评分或任务后重建。FY-86 MILCON 项目 P210(2630 万美元)授权在佐治亚州近海建造八座塔楼,以使战术机组战斗训练系统 (TACTS) 能够在从海平面到 60,000 英尺的空战训练演习期间准确监视和控制飞机。 TACTS 包括四个主要子系统:飞机仪表子系统 (AIS)、跟踪仪表子系统 (TIS)、控制和计算子系统 (CCS) 以及显示和汇报子系统 (DDS)。FPO-1 负责 CTACTS 海上塔的设计和建造,海军航空系统司令部提供设施要求。FPO-1 与 Brown & Root Development Inc. (B&R) 签订了合同,担任主要 AE。B&R 使用 Ocean Weather 进行气象和海洋工作,使用 McClelland Engineers, Inc. 进行地球物理和岩土工作。此外,FPO-1 还与 Earl and Wright Consulting Engineers 签订了合同,他们为该项目提供设计质量保证 (DQA)。无人塔将位于南卡罗来纳州查尔斯顿以南约 80 英里处,北乔治亚州以东约 60 英里处,如下图所示。有两个主站,配有共置遥控器和六个远程站。其中一个远程结构除了支持 TIS 远程电子设备(中继/远程)外,还支持微波中继设备。主结构支持两个抛物面天线、一个用于电子设备的防水/防风雨封闭区域、约 24,000 磅的电池和相关设备、一个独立的混合太阳能和风能系统、带燃料储存的备用柴油发电机组和一个直升机场。中继/远程结构支持两个抛物面天线、电池、发电机和直升机场。远程结构支持两个抛物面天线、光伏板、电池和一个直升机场。最终设计于 1985 年 8 月完成,塔的配置如下所示。八个海洋结构中的每一个都由管状钢空间框架模板、上部结构和桩组成。桩的总长度超过 6,000 英尺。所有八个平台的总钢吨位约为 7,000 吨。