左插图)。在高分辨率TEM图像中(图1b),由于pH-PEI锚定在纳米颗粒的表面上,芯和壳表现出明显的衬里差异。电子衍射图像(图1b)和晶格间距(图1c)与CEO 2晶体结构的(111),(200),(220)和(311)晶体平面相匹配。[29,30] Bare CEO 2和CEO 2的XRD模式 @PH-PEI显示了八个衍射峰,与CEO 2的特征结构相对应(PDF#00-004-0593)(图。1d),而CEO 2的衍射峰 @pH-PEI更加清晰,更窄,
有效的基因疗法依赖于有效的基因递送系统。病毒基因递送在转移和表达外部基因方面表现出色。但是,它们的免疫力和大规模生产的困难限制了其临床应用。相比之下,由于免疫原性较小,对大规模生产的便利性,基于纳米颗粒的基因递送系统的注意力越来越多。然而,与病毒系统相比,它们的转染效率差仍然是一个重要的障碍。在主题研究中,我们研究了在HEK293T,CALU-3,CALU-6细胞系和原代人骨髓间充质干细胞(MSC)中,我们调查了PEI涂层石墨烯氧化物的转染效率。氧化石墨烯的高表面比和良好的生物相容性使其成为基因递送系统的吸引力。但是,在水性环境中氧化石墨烯的低分散性是需要征服的第一个障碍。为此,我们通过在pH值为7的pH值中超声超声来增强水中氧化石墨烯在水中的分散性和稳定性。然后,将氧化石墨烯与分支PEI(25 kDa)偶联以具有局部电荷,从而使其能够将其凝结为具有天然负潜能的核酸。我们合成的纳米载体(GO-PEI)的生理化学特性由DLS,FT-IR和AFM确定。多聚体中使用的质粒包含GFP基因,从而使我们能够通过荧光显微镜和流式细胞体 - 尝试验证转染效率。虽然GO-PEI载体在转染HEK293T细胞方面高效,但MSC和Calu-3细胞的转移效率明显低。我们假设这些细胞中GO-PEI转染效率较低的主要原因是由于其较高的毒性。尽管如此,考虑到氧化石墨烯在药物输送中的各种优势以及其在生物医学中的光学和电气应用,我们建议用更具生物相容性材料功能化氧化氧化烯,以增强其作为这些细胞类型中基因载体的潜力。
EMB 抗性菌株的最低抑菌浓度 (MIC) 往往在 7.5 μg/mL 至 40 μg/mL 范围内。8–11 5 μg/mL 的测试浓度(使用分枝杆菌生长指示管 (MGIT))可以区分大多数敏感菌株和抗性菌株。除了传统的基于生长的药物敏感性测试 (DST) 之外,DNA 突变的分子检测也可以提供预测耐药性的宝贵信息。虽然 MTBC 对 EMB 的耐药机制尚不明确,基因组靶点也未得到充分记录,12 但许多研究人员已将研究重点放在 embCAB 操纵子的作用上,特别是 embB 基因。多名研究人员发现,embB 密码子 306 的突变是最常见的点突变,50–70% 的分离株含有赋予 EMB 抗性的突变。 5,8,11,13–16 然而,embB 中的其他突变,以及 embC 和 embA 中的突变,也已被证实