纽黑文,康涅狄格州 - 2025年3月10日 - Verinomics是农业基因组学和基因编辑的领导者,今天揭幕了两个突破性平台,旨在加速特殊的作物创新:Genesis™,无经晶元的无基因基因编辑平台,主要用于植物性的植物和基因上的植物性繁殖量,主要是用于植物性繁殖的繁殖平台。,这些技术简化了特质发现和产品开发,比以往任何时候都更快地提供高价值的,可提供市场的农作物。筹集了1300万美元,Verinomics已建立了一个基因组驱动的育种和免费的编辑管道,建立了多个关键的合作伙伴关系,并开发了专有工具来加速产品开发。Verinomics遵循合作伙伴首先的模型,与托儿所,种子公司和种植者合作,共同开发具有共同知识产权的高价值产品。“我们建立了Verinomics,具有利用基因组技术的愿景来解决农业的紧急挑战,” Verinomics总裁,创始人和教授Stephen Dellaporta博士说。“我们的精确育种平台结合了染色体级的基因组组件,人群基因组学,基于AI的特征鉴定和无基因基因编辑,使我们能够快速识别有价值的性状的遗传结构,并在不引入异物的情况下发展增强的,编辑的品种。” Genesis™平台解锁了多种农作物的精确基因编辑,包括营养繁殖的农作物,克服繁殖约束并将创新带给历史悠久的作物。同时,Genova™整合了AI和计算生物学,以优化基因组选择和性状鉴定,以极大地加速种子和营养传播作物的繁殖周期。Verinomics直接与托儿所,种子公司,种植者和生产商合作,以确定具有明显市场收益的高价值特征。此共同开发模型可确保为整个供应和价值链的量身定制的解决方案和更高的价值。
海军基地科罗纳多(2024年5月15日) - 来自无人地面船队3(USVRON 3)的全球自动侦察飞船(GARC)在该单位建立仪式之前在圣地亚哥湾远程运作。海上应用物理公司建造的16英尺GARC可实现研究,测试和操作,这些研究将允许在整个地面,远征和联合海事部队中进行整合。(美国海军摄影:MC1 Claire M. Dubois)由美国太平洋舰队公共事务海军地面部队指挥官Karli Yeager - 2024年5月17日
背景和目标:红树林栖息地在全球碳循环中起着至关重要的作用,减少温室气体排放并减轻气候变化的影响。卫星图像和航空摄影已被广泛用于绘制红树林生态系统的动力学。这些照片被用作包括印度尼西亚在内的国际政策协议的投入,以定义有关二氧化碳排放到森林砍伐和土地利用变化引起的大气中的法规。这项研究旨在绘制森林以识别森林砍伐区域,并评估非法伐木对印度尼西亚北萨姆特拉(North Sumtera)Lubuk Kertang Village在印度尼西亚北萨姆特拉(Lubuk Kertang Village)的红树林碳库存的影响。方法:使用Da-Jiang Innovations Phantom 4 Professional在150米高度的高分辨率卫星图像中获得光度数据分析。仔细部署飞行路径以获得高度准确性的最佳图像捕获准确性,从8月5日至8月5日进行了90%。卫星图像在某些地区被捕获,例如修复的红树林和油棕种植园。两个研究地点都产生了正驱动器和数字表面模型,以及将无人驾驶飞机与光度法方法的整合导致数据处理运动方法从结构开发。的发现:这项研究比较了2022年卢布克·库尔塔村红树林的碳储存量与2023年的碳库存,或者使用无人驾驶飞机摄影测量现场调查的非法日志记录复发。在红树林中的地上生物量的分布覆盖了2022年的253.4公顷土地,每公顷15.819 megagram。与此同时,在2023年,地上生物质为每公顷70.94兆格兰,总碳为每公顷8.927兆格兰。这项研究表明,卢布克·科尔本村(Lubuk Kertang Village)的红树林比上一年损失了约56%。结论:非法记录对碳固存/股票造成了重大威胁。这种现象强调了需要改进监测和保护策略的必要性。遥感技术和现场调查的组合为蓝色碳库存,红树林保护计划以及监测沿海生态系统中的气候,社区和生物多样性项目提供了强大的工具。
2024年10月7日,卡罗林斯卡研究所的诺贝尔议会授予了今年的诺贝尔·安布罗斯(Victor Ambrose)和加里·鲁夫库(Gary Ruvkun)的诺贝尔生理学或医学奖,“因为MicroRNA的疾病及其在转录后基因调节中的作用及其作用”(https://wwwwwwwwwwwww..nobelprize.ornice.rine/mide sime ofence oferne oferne of to MicroRNA/)。这项获奖研究发表在1993年的Back-back Compers中,在细胞中证明了Lin-4 microRNA在从较大的第二阶段通过base-pair for Attart MRNA降低了lin-14 mRNA在细胞质量中的LIN-14 mRNA的翻译和降解。当Ruvkun及其同事后来确定并描述了更加保守的Let-7 microRNA,在从小幼虫晚期到成人阶段的转录后调节作用在从软体动物到垂直阶段的动物的过渡期间起着类似的调节作用(但在植物,酵母,酵母,豆科群岛或犬科动物的发展中都没有多细胞生物的机械[1]。
运动已在帕金森氏病中进行了广泛的研究,特别关注动物模型中已证明的神经保护的潜力。虽然这项临床前的工作提供了对基本分子机制的见解,但它尚未解决运动过程中的神经生理学变化。首先,我们在帕金森氏病的6-羟基多巴胺小鼠模型中测试了自适应轮运动的神经保护作用。一无所获,我们将运动的神经生理学探索为在未修补的帕金森病变中的高运动功能状态。运动与多巴胺消耗的黑质中的特征性,兴奋性变化有关,这可以通过多巴胺受体阻滞而抑制运动。向前看,运动优点诱发的功能状态可能进一步研究,因为它可能代表神经调节的最佳靶标,即使无法避免基础病理。
将孔隙度引入铁电陶瓷可以降低有效的介电常数,从而增强直接压电效应产生的开路电压和电能。然而,纵向压电系数的减小(D 33)随着孔隙率的增加,目前限制了可以使用的孔隙率范围。通过将排列的层状孔引入(Ba 0.85 Ca 0.15)(Zr 0.1 Ti 0.9)O 3中,本文在D 33中表现出与其密集的对应物相比,D 33中的22–41%增强。这种独特的高D 33和低介电常数的独特组合导致了明显改善的电压系数(G 33),功能收获(FOM 33)和机电耦合系数(k 2 33)。证明改进特性的基本机制被证明是多孔层状结构内的低缺陷浓度和高内极化场之间的协同作用。这项工作为与传感器,能量收割机和执行器相关的应用的多孔铁电剂设计提供了见解。
全面的体格检查,包括口腔和直肠检查,是每次健康访问的组成部分。兽医在如何进行这些考试方面获得了广泛的培训,这是全科医生的常规任务;但是,无论检查多么彻底,在解剖位置都可以存在癌症(例如,由于身体习惯或患者气质)或不可能(例如,胸膜内),而没有其他工具(例如成像)。对于可能通过体格检查逃避评估或检测的解剖学位置,癌症筛查的另一种方法有可能为临床医生和宠物主人提供重要的效用。这样的筛查工具不仅应该能够识别出可能难以检测的癌症患者,而且还应支付允许广泛且可公平的访问的成本。
AOZ32063MQV features high-side 100 percent duty cycle operation with integrated bootstrap diode, adjustable deadtime, and multiple protections for 3-phase BLDC motor drive designs SUNNYVALE, Calif., Feb. 20, 2024 – Alpha and Omega Semiconductor Limited (AOS) (Nasdaq: AOSL), a designer, developer, and global supplier of a broad range of discrete power设备,宽带间隙电源设备,电源管理IC和模块今天宣布发布用于BLDC电动机应用的AOZ32063MQV Gate驱动程序。是一个3相驱动程序IC,可提供出色的驾驶能力,可编程的死亡时间和睡眠模式支持。这些功能可提供高电动机运行效率和低备用功耗,从而有助于大大提高无绳电动工具和电子操作性应用的电池寿命。AOZ32063MQV也是3相无刷直流(BLDC)电动机的最佳驱动器IC解决方案。
在固态电解质(SSE)中使用金属有机框架(MOF)一直是一个非常有吸引力的研究领域,在现代世界中引起了广泛关注。SSE可以分为不同的类型,其中一些可以与MOF结合使用,以通过利用高表面积和高孔隙率来改善电池的电化学性能。但是,它也面临许多严重的问题和挑战。在这篇综述中,分类的不同类型的SSE类型,并描述了添加MOF后这些电解质的变化。之后,引入了这些带有MOF的SSE,以用于不同类型的电池应用,并描述了这些SSE与MOF结合在细胞电化学性能上的影响。最后,提出了MOFS材料在电池应用中面临的一些挑战,然后给出了一些解决MOF的问题和开发期望的解决方案。
b'sandwich排列,其中包含捕获目标 - 信号探针。随后通过监测观察到的亚甲基蓝(MB)的峰值电流变化来检测所得的DNA杂交事件,该峰值电流变化被用作氧化还原物种,并实现了35 AM的检测极限。Wang等。 [5]基于RGO和锰四苯基孢子的A \ XCF \ X80-偶联结构的自组装纳米复合材料开发了DNA生物传感器,导致6 \ xc3 \ x9710 14M的检测极限,在另一项研究中,在另一项研究中,Ye等。 [6]采用了一个转导界面,该界面由捕获的DNA序列,Aunps和Thionines在玻璃碳电极上官能化RGO来构建无标记的DNA生物传感器,并获得了4.28 \ xc3 \ x9710 199的检测极限。 Chen等。 [7]还基于由氧化铜纳米线和羧基官能化的单壁碳纳米管(SWCNT)组成的杂化纳米复合材料(SWCNTS)开发了特定的序列DNA检测。 DNA检测是通过循环伏安法和3.5 \ xc3 \ x9710 15 m的检测极限。 Zhou等。 [8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。 他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。 在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。Wang等。[5]基于RGO和锰四苯基孢子的A \ XCF \ X80-偶联结构的自组装纳米复合材料开发了DNA生物传感器,导致6 \ xc3 \ x9710 14M的检测极限,在另一项研究中,在另一项研究中,Ye等。[6]采用了一个转导界面,该界面由捕获的DNA序列,Aunps和Thionines在玻璃碳电极上官能化RGO来构建无标记的DNA生物传感器,并获得了4.28 \ xc3 \ x9710 199的检测极限。Chen等。 [7]还基于由氧化铜纳米线和羧基官能化的单壁碳纳米管(SWCNT)组成的杂化纳米复合材料(SWCNTS)开发了特定的序列DNA检测。 DNA检测是通过循环伏安法和3.5 \ xc3 \ x9710 15 m的检测极限。 Zhou等。 [8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。 他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。 在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。Chen等。[7]还基于由氧化铜纳米线和羧基官能化的单壁碳纳米管(SWCNT)组成的杂化纳米复合材料(SWCNTS)开发了特定的序列DNA检测。DNA检测是通过循环伏安法和3.5 \ xc3 \ x9710 15 m的检测极限。Zhou等。 [8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。 他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。 在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。Zhou等。[8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。在另一项研究中,Zhang等人。[9]为特定序列检测制造了无标记的DNA传感器。将DNA固定在用石墨烯,Aunps和Polythionine(Pthion)修饰的玻璃碳电极上。通过不同的脉冲伏安法检测到杂交,并且在0.1 pm至10 nm的动态范围内达到了35 fm的检测极限。Bo等人开发了石墨烯和聚苯胺的电化学DNA生物传感器。[10]用于DPV检测辅助DNA序列,并达到了'