能源生产和交通领域的脱碳需要立即采取行动,增加可再生能源技术的使用,以应对全球变暖。[1–3] 与此同时,可再生能源在能源网中的系统安全整合在很大程度上取决于能源供应、传输能力和需求在所有时间尺度(短期到季节性或年度)以及不同系统层级(分散式和集中式)上的灵活性。[4–8] 这只能通过开发综合存储和燃料系统来实现,该系统需要涉及不同载体(热能、燃料和电力)的一系列不同技术。[9] 此外,需要有效发展跨部门整合,以促进可持续的能源转型。尤其是能源存储技术被视为系统灵活性的重要支柱,为部门耦合提供了巨大的潜力。 [10] 现有的技术包括不同的二次电池(锂离子或氧化还原液流电池)、机械能储存(如抽水蓄能或压缩空气储能)以及将可再生电力转换为二次能源载体(即电转氢、电转甲烷、电转氨等)。[11–14] 事实证明,电池通过提供广泛的电网服务,是短期缓解电网波动(可再生能源发电过剩和短缺)的最合适的解决方案。[11–13] 同时,对于目前提议的较长时间的能源载体,PtX 技术通常被称为将可再生和无碳电力转化为燃料的理想途径。 [15] 与其他能量载体相比,H2 以这种方式提供了最高的质量能量密度,但对于较长的存储时间,其较低的体积能量密度限制了其应用,这主要是由于 H2 存储量大且成本高昂。[16]
电力电子标准 AEG PS Tours 设备是根据下列 IEC 标准的适用部分设计和制造的。IEC/EN60051 电气测量仪器。IEC/EN60068 环境测试。IEC/EN60073 指示灯和按钮的颜色。IEC/EN60076 电力变压器。IEC/EN60529 低压开关设备和控制设备外壳的防护等级 IEC/EN60146 半导体转换器。IEC/60157 低压配电设备。IEC 60158 低压控制设备。IEC/EN60044-1 电流互感器。IEC 60186 电压互感器。IEC/EN60204 工业机械电气设备。IEC/EN60228 绝缘电缆导体。IEC/EN60255 电气继电器。IEC/EN60269 低压保险丝。 IEC/EN60289 电抗器。IEC/EN60384 电子设备用固定电容器。IEC/EN60439 低压开关设备和控制设备组件。IEC/EN60445 设备端子识别和统一端子标记系统的一般规则。IEC/EN60446 通过颜色识别绝缘导体和裸导体。IEC 60478 稳定电源直流输出。IEC/EN60598 灯。IEC/EN60417 设备用图形符号。IEC/EN60617 图表用图形符号。IEC 60750 (1983) 由 IEC 61346 (1996) 取代。IEC 61346 工业系统、装置和设备及工业产品 - 结构原则和参考名称第 1 部分:基本规则;第 2 部分:物体分类和类别代码 EN 50178 电力装置用电子设备。EN 55011 工业、科学和医疗射频设备的无线电干扰特性的限值和测量方法。EN50272-2 二次电池和电池装置的安全要求。EN 60947 低压开关设备和控制设备(断路器、开关、接触器)。NF C58-311 蓄电池充电器类型测试程序。
锂离子电池 (LIBs) 具有高能量密度和长寿命的特点,在便携式电子设备和电动汽车方面取得了显著成功 [1-4]。然而,由于有机电解液、锂储量不足和成本高等问题,LIBs 的进一步应用受到限制 [5-7]。因此,有必要开发替代性二次电池来取代 LIBs [8,9]。水系锌金属电池 (AZMBs) 已成为有竞争力的候选电池,因为锌 (Zn) 金属负极具有优异的理论容量 (820 mAh g −1 和 5855 mAh cm −3) 和低电化学电位 (−0.76 V vs. 标准氢电极)、丰富的锌资源,以及水系电解质固有的安全性和高离子电导率 (~ 1 S cm −1 vs. 1-10 mS cm −1 有机电解质) [10-16]。然而,锌金属负极存在析氢反应(HER)、腐蚀、钝化、枝晶生长等严重问题,导致可逆性差、循环寿命不稳定,甚至发生短路故障[17–23]。这些问题严重阻碍了AZMBs的实际应用。为了克服上述问题,人们提出了各种针对锌金属负极的稳定策略,包括表面改性、结构优化、电解质工程和隔膜设计[24–31]。然而,由于使用了远远过量的锌,这些研究尚未实现较高的锌利用率[32]。为了补偿Zn的不可逆损失,提高充放电过程的循环稳定性,研究人员通常构建Zn过量(Zn箔厚度≥100μm)、面积容量低(1-5mAh cm−2)的锌金属负极,导致负极与正极的容量比高(N/P>50),放电深度(DOD)较低(<10%)[33]。放电深度(DOD)是参与电极反应的容量占锌金属负极总容量的百分比:
气候中和目标和清洁能源转型迅速推动了对电池的需求增长,使电池市场在全球范围内具有越来越重要的战略意义。材料效率、延长使用寿命和循环经济被视为确保关键原材料供应的关键战略。欧盟委员会认为,储存能源可以灵活地调整需求和供应,这是提高可再生能源生产和利用、能源效率和安全性的关键。电池是实现欧盟气候中和目标、取代对化石燃料的依赖和增加可再生能源使用的关键。目前,在欧盟,废旧电动汽车电池在二次利用中的利用是一个开发程度较低的领域,立法支持有限。二次利用应用具有尚未开发的潜力,在回收之前实施更高的循环商业模式可能有助于实现欧盟的几个关键战略目标。尽管再利用电动汽车电池几乎只会带来积极影响,但成功扩大规模仍面临许多挑战。本研究介绍了对现有技术的再利用和再利用进行全面文献综述的结果,确定了不同的循环商业模式,并概述了欧盟、挪威和芬兰的相关立法状况。我们进行了访谈,以了解各利益相关者群体如何看待这一业务领域的可能性,以及他们认为实施二次电池的主要障碍是什么。总共确定了四个不同类别的 10 个挑战和障碍:技术、立法、生态设计和安全性/可靠性。技术挑战与历史数据访问受限、电池设计缺乏标准化以及电池技术的快速发展有关。安全性/可靠性受到有限的标准和立法的阻碍,也受到技术挑战的影响。尽管新标准正在制定中,新的欧盟电池法规将解决一些已确定的挑战,但这些变化生效仍需要时间。此外,欧盟电池法规优先考虑电池的材料回收,而不是旨在以循环方式延长电池寿命的活动,因为它规定新电池中至少有一部分材料来自再生材料。
简介高级电池化学的简短历史和概述:第一个锂离子电池原型流行锂(ION)细胞类型:电池是什么?铅酸电池是由什么制成的?铅酸电池构建块铅酸电池如何工作?什么是电化学过程?什么是由锂(离子)电池制成的?锂(离子)电池构建块在典型的锂电池中有多少锂?锂电池原材料是锂(离子)电池如何工作的?锂(离子)电池电化学过程如何工作?锂电池和锂离子电池有什么区别?电池有何不同?电池技术要么是“主要”不可充电或“次要”,而且可充电!什么是主电池?什么是二次电池?电池的工作电压不同。什么是名义电压?什么是开路电压?铅酸电池的标称电压为每个细胞的2.0伏。碱性细胞的名义电压为每个细胞1.5伏。锂金属细胞的标称电压从1.50V/细胞到3.70V/细胞。锂(离子)细胞有多种化学物质,并具有不同的标称电压。NICD(镍镉)和NIMH(镍金属氢化物)细胞通常输出1.20-1.25 V/细胞名称。什么是当前?什么是权力?什么是放大器?什么是电压?什么是阻力?什么是当前?什么是权力?什么是放大器?什么是电压?什么是阻力?欧姆定律:说明当前(放大器),电阻(欧姆)和电压之间的关系。瓦特法律:说明功率(瓦特),电流(放大器)和电压之间的关系。电池具有不同的功率和能量密度?什么是权力?功率的最简单定义是“完成工作的速度”。什么是功率密度?功率密度的最简单定义是“音量单位中的功率量”或“能量可以传递的时间速率”。什么是能量?能量的最简单定义是“工作能力”“或水箱中的水”。什么是能量密度?能量密度的最简单定义是:“给定质量,体积或空间中的能量量”。能量密度以两种方式解释。什么是重量的能量密度?什么是体积能量密度?什么是有用或可用的能量?可用的能源与可用能源有何不同?温度如何影响锂电池?热量杀死所有电池!温度如何影响锂电池电化学反应?温度如何影响锂电池组件或构件?温度如何影响锂电池的电荷状态?温度如何影响锂电池自放电过程?温度如何影响锂电池电源电子设备或BMS?与铅酸相比,锂电池是否更有效,更快?您可以为锂电池充电多快?快速充电锂电池具有折衷的快速充电技术快速充电如何为锂LifePo4(LFP)电池充电如何快速充电Lithium LifePo4(LFP)电池?如何为锂LifePo4(LFP)电池充电?发现锂LifePo4(LFP)电池的电池很快。发现DLX钛锂(LTO)电池的充电非常快。如何充电发现DLX钛锂(LTO)电池磷酸铁锂(LifePo4)电池优势
1. Kyeremateng, N. A.、Brousse, T. 和 Pech, D. (2016)。微型超级电容器作为片上电子设备的微型储能组件。Nat. Nanotechnol. 12,7。2. Long, J. W.、Dunn, B.、Rolison, D. R. 和 White, H. S. (2004)。三维电池架构。Chem. Rev. 104,4463-4492。3. Arthur, T. S.、Bates, D. J.、Cirigliano, N.、Johnson, D. C.、Malati, P.、Mosby, J. M.、Perre, E.、Rawls, M. T.、Prieto, A. L. 和 Dunn, B. (2011)。三维电极和电池架构。MRS Bull。 36 , 523-531。4. Roberts, M.、Johns, P.、Owen, J.、Brandell, D.、Edstrom, K.、El Enany, G.、Guery, C.、Golodnitsky, D.、Lacey, M.、Lecoeur, C. 等 (2011)。3D 锂离子电池——从基础到制造。J. Mater. Chem. 21 , 9876。5. Oudenhoven, J. F.、Baggetto, L. 和 Notten, P. H. (2011)。全固态锂离子微电池:各种三维概念的回顾。Adv. Energy Mater. 1 , 10-33。 6. Yabuuchi, N., Kubota, K., Dahbi, M., 和 Komaba, S. (2014)。钠离子电池的研究进展。Chem. Rev. 114 , 11636-11682。 7. Wu, X., Leonard, D. P., 和 Ji, X. (2017)。新兴非水系钾离子电池:挑战与机遇。Chem. Mater. 29 , 5031-5042。 8. Muldoon, J., Bucur, C. B., 和 Gregory, T. (2014)。非水系多价二次电池的探索:镁及其他。Chem. Rev. 114 , 11683-11720。 9. Dunn, B., Kamath, H., 和 Tarascon, J. M. (2011)。电网电能存储:电池的选择。科学 334, 928-935。 10. Ni, J. 和 Li, L. (2018)。用于钠微电池的自支撑三维阵列电极。副词。功能。马特。 28, 1704880。 11. Komaba, S.、Murata, W.、Ishikawa, T.、Yabuuchi, N.、Ozeki, T.、Nakayama, T.、Ogata, A.、Gotoh, K. 和 Fujiwara, K. (2011)。硬碳电极的电化学钠插入和固体电解质界面。副词。功能。马特。 21、3859-3867。 12. Wen, Y., He, K., Zhu, Y., Han, F., Xu, Y., Matsuda, I., Ishii, Y., Cumings, J., 和 Wang, C. (2014)。膨胀石墨作为钠离子电池的优质阳极。Nat. Commun. 5, 4033。13. Ni, J., Fu, S., Wu, C., Maier, J., Yu, Y., 和 Li, L. (2016)。硫掺杂 TiO 2 的自支撑纳米管阵列可实现超稳定和强大的钠存储。Adv. Mater. 28, 2259-2265。14. Fu, S., Ni, J., Xu, Y., Zhang, Q., 和 Li, L. (2016)。氢化驱动导电 Na 2 Ti 3 O 7 纳米阵列作为钠离子电池的坚固无粘合剂阳极。纳米快报。16,4544-4551。