摘要:在电动汽车 (EV) 中首次使用电池代表着在回收电池之前减少对环境的影响并增加经济效益的机会。已经提出了许多不同的二次使用应用,每种应用都有多个标准,在决定最合适的行动方案时必须考虑这些标准。在本文中,提出了一种电池评估程序,该程序巩固并扩展了文献中的方法,并促进了电池在达到其首次使用寿命后的决策过程。该程序由三个阶段组成,包括电池状态评估、技术可行性评估和经济评估。探讨了电池配置选项(直接使用电池组、电池组堆叠、直接使用模块、使用模块翻新电池组、使用电池翻新电池组)。通过将这些配置与二次使用应用的技术要求进行比较,读者可以快速了解如何最好地将二次使用电池应用于其特定应用的权衡和实用策略。最后,开发了经济评估流程,以确定实施各种二次电池配置的成本以及不同最终用途应用的收入。其中包括电池评估程序的示例,以演示如何执行该程序。
摘要 在一个能源需求不断增长、越来越重视可持续解决方案的时代,电池和储能的作用已变得至关重要。本章作为导论深入探讨了电池和储能系统的基本概念,阐明了它们在现代社会中的重要性。本章首先阐明了储能的基础及其与从便携式电子产品到可再生能源整合等各个领域的相关性。全面概述了电池类型,包括化学成分、工作原理和常见应用。这项基础探索涵盖了一次电池和二次电池、锂离子电池、铅酸电池以及固态电池等新兴技术。此外,本章还讨论了电池设计中的关键考虑因素,例如容量、电压和效率,以及自放电和循环寿命等因素带来的挑战。讨论扩展到电池以外的储能系统,包括超级电容器、飞轮和压缩空气系统,阐明了它们的独特属性和部署场景。贯穿本章的重点是不断发展的储能格局,其特点是创新和可持续性要求,这是一条主线。随着全球对高效、可靠和环保能源解决方案的追求不断升级,本章为深入探索电池和储能系统奠定了基础,为后续章节的更深入分析和应用奠定了基调。
摘要:电池储能系统 (BESS) 的优化因其众多优势(例如提高能源效率、成本效益和促进网络稳定性)而越来越受到消费者的欢迎。随着电动汽车 (EV) 电池的老化,在拆卸电池后进行有效管理对于提高能源效率至关重要。在这种情况下,将二次电池 (SLB) 重新用于 BESS 应用提供了一种非常有吸引力的直接回收或处置替代方案,既具有经济效益又具有环境效益。因此,本研究旨在通过比较 IEEE 14 总线中的新电池和 SLB 来确定 BESS 的最佳尺寸和位置。该分析侧重于开发基于高光伏 (PV) 渗透率、集成运营和投资成本的经济高效的能源系统,使用从线性化网络得出的直流最优功率流 (DC-OPF) 模型。结果表明,与没有 BESS 的情况相比,优化 BESS 分别使光伏渗透率和未供应能源成本降低 2.28% 和 3.38%。此外,25%的光伏渗透率分别使新电池和SLB的每日总运营成本降低约38.89%和74.77%。
• 安培 (A、amp、amperage) o 用于表示电子 (电流) 流动的测量单位 o 一安培表示每秒通过电路中给定点的一库仑 (62.8 亿 - 十亿个电子) 的流量 o 在数学问题中,安培用字母“I”表示 • 电池 o 一种由多个串联连接的一次伏打电池 (无法充电的电池) 或二次电池 (可以充电的电池) 组成的装置,用于获得所需的直流电压 o 电池储存化学能并以电能形式提供 o 飞机蓄电池的额定电压通常为 12 伏或 24 伏 • 电容器 o 用于以静电场的形式储存电能的电气元件 o 电容器是由两个平行导体组成的装置,由绝缘体隔开 • 导体 o 电路的常见构建块,可轻松允许电子从电源移动到负载并返回电源的电阻最小 o 导体的电阻取决于横截面积、长度、温度和导体材料等因素 • 库仑 o 电量的基本单位 o 库仑等于 62.8 亿个电子 (6.28 X 10 的 18 次方) • 电流 o 电子通过导体的流动称为电流 o 电流的速率以安培为单位 • 直流电 o 电子在一个方向上流动
摘要 — 预测具有有限衰减历史的锂离子电池的剩余使用寿命 (RUL) 至关重要,因为它可以确保及时维护电动汽车并有效重复使用二次电池。考虑到现实的电池运行条件,本文研究了在目标电池衰减历史有限的情况下在部分充电和放电条件下的 RUL 预测。鉴于其能够告知特征重要性,采用随机森林来帮助对不同的电池测量进行优先排序,并确定准确预测 RUL 所需的最少运行数据量。通过使用一个完整的充电和放电循环检查预测性能,结果表明充电和放电的持续时间、使用容量和电压信号包含与电池 RUL 相关的重要特征。在荷电状态 (SOC) 不确定性下,还研究了部分充电和放电下的预测性能,结果表明,在 SOC 范围 [0.2,0.8] 内收集的数据可实现令人满意的性能。与现有的使用四个完整充电和放电循环的卷积神经网络方法相比,验证了所提方法增强的板载可行性。对 SOC 范围的敏感性分析表明,SOC 范围 [0 . 1 , 0 . 2] 内的数据包含磷酸铁锂电池最丰富的 RUL 相关信息。对具有不同化学性质、环境温度和 C 速率的电池进行广泛验证进一步证明了所提方法的稳健性。
2. 亚洲开发银行 (ADB) 正在通过库克群岛可再生能源部门项目 (CIRESP)(以下简称“项目”)支持库克群岛政府实施 CIREC,该项目旨在为私人和商业消费者提供安全、可持续和环保的电力来源。该项目由亚洲开发银行、欧盟 (EU)、全球环境基金 (GEF)、太平洋环境共同体 (PEC)、绿色气候基金 (GCF) 和库克群岛政府 (GCI) 共同资助。 3. 该项目分为两个阶段。第一阶段将包括阿蒂乌、米蒂亚罗、毛克和曼加亚的子项目。该项目将建设四个太阳能光伏发电系统,总装机容量约为 1.2 兆瓦。子项目还将安装先进的二次电池存储和控制系统(所有四个岛屿)、新的柴油备用发电机(毛克和米蒂亚罗)和新发电站(毛克和米蒂亚罗),并将修复米蒂亚罗、毛克和曼加亚的配电网络。表 1 提供了第一阶段各岛屿上设计、招标和竣工的光伏和电池储能系统容量的摘要,而艾图塔基(第二阶段)现已完工。表 1:设计、招标和竣工的光伏和电池储能系统容量摘要
摘要:道路上电动汽车 (EV) 的数量不断增加,导致达到首次使用寿命的电池数量也不断增加。然而,这种电池仍有 75-80% 的剩余容量,为在低耗电量应用中实现二次使用寿命创造了机会。利用这些二次电池 (SLB) 需要进行专门的准备,包括根据电池的健康状态 (SoH) 对电池进行分级;重新包装,考虑最终用途要求;以及基于经过验证的理论模型开发准确的电池管理系统 (BMS)。在本文中,我们对 SLB 的数学建模和实验分析进行了技术审查,以解决 BMS 开发中存在的挑战。我们的审查表明,最近的大多数研究都侧重于环境和经济方面,而不是技术挑战。审查建议使用具有 2RC 和 3RC 的等效电路模型,这些模型在估计锂离子电池在二次使用寿命期间的性能方面表现出良好的准确性。此外,电化学阻抗谱 (EIS) 测试提供了有关 SLB 退化历史和条件的宝贵信息。为了解决日历老化机制,建议使用电化学模型而不是经验模型,因为它们更有效、更高效。此外,建议使用合成负载数据根据实际应用场景生成循环老化测试配置文件,以便进行可靠的预测。人工智能算法在预测 SLB 循环老化衰减参数方面显示出良好的前景,为实验室测试提供了显著的节省时间的优势。我们的研究强调了关注技术挑战的重要性,以促进 SLB 在固定应用中的有效利用,例如建筑储能系统和电动汽车充电站。
摘要 交通运输行业正朝着电气化发展,这意味着可用于电网储能系统 (ESS) 的旧锂离子 (Li-ion) 电池的可用性将发生巨大变化。然而,二次电池模块的电池之间的健康状态 (SOH) 可能不平衡,这会降低电池的安全性、寿命和放电深度。这项工作评估了一种新型异质统一电池 (HUB) 修复系统的经济性,该系统循环电池模块以统一电池的 SOH,从而提高其二次电池性能。HUB 修复循环可以通过两种方式之一执行:使用电网服务进行修复或通过能量转换进行修复。这项工作的结果表明,在我们的基准情景中,简单的再利用过程的二次转售价格 (56 美元/千瓦时) 可能低于 HUB 系统 (62 美元/千瓦时);然而,在我们的目标情景中,HUB 系统 (34 美元/千瓦时) 的转售价格低于再利用系统 (38 美元/千瓦时)。这项工作还包括对电网 ESS 中使用翻新电池的经济性分析,并与使用新锂离子电池组装的 ESS 进行了比较。结果表明,HUB 翻新 ESS 所需的电网收入(194 美元/千瓦年)低于新锂离子 ESS(253 美元/千瓦年)。最后,HUB 翻新 ESS 在 63% 的频率调节、18% 的输电拥堵缓解和 16% 的需求费用减少市场中具有经济可行性,但在旋转/非旋转备用、电压支持和能源套利市场中不具有经济可行性。
蓬勃发展的电动汽车 (EV) 行业对具有更高能量密度和更高安全性的二次电池的需求日益增加 [1,2]。在传统锂离子电池 (LIB) 中,石墨由于其低还原电位、优异的可逆性和高电子/离子电导率而长期被视为一种良好的负极材料 [3-5]。然而,延长电动汽车每次充电的行驶距离需要将能量密度提高到超出商用 LIB 的范围。沿着这个方向,新型负极材料和结构的开发引起了业界的广泛关注 [6-9]。特别是从电池配置的角度来看,无负极结构被认为是最合适的能量密度结构,因为不需要活性材料可以最大程度地减小电极体积。请注意,人们已经通过修改集流体或设计电解质在 LIB 中研究了无负极系统 [10-13]。在安全性方面,与传统内燃机相比,电动汽车电池组中电池串联密集排列所带来的火灾隐患更难解决。点火后,电动汽车电池组容易起火,并迅速蔓延到周围的电池组和其他配件 [14],因为相邻电池组中的电池很容易满足点火的三个条件:氧气、热量和燃料。由于将氧气和热量从电池系统中排除几乎是不可行的,因此人们的注意力自然而然地集中在商用 LIB 中的易燃电池组件上,即碳酸盐基液体电解质。这就提出了一个问题 [15]:能否在不牺牲关键电化学性能的情况下将这些电解质替换为不易燃的电解质?对解决这一问题的需求不断增长,导致了全固态电池 (ASSB) 的出现
全球能源需求的不断增长以及化石燃料消耗引起的气候变化要求实施可再生能源技术。然而,风能和太阳能发电的间歇性要求可靠的能量储存。虽然二次电池由于其模块化和便携性而成为颇具吸引力的储能设备,但目前的电池技术,如锂离子电池 (LIB),尚未达到广泛采用所需的能量密度和低成本。在迄今为止研究的各种电池化学中,锂硫 (Li-S) 电池作为 LIB 的有前途的替代品脱颖而出。锂硫电池可以实现 2,572 Wh kg -1 的高理论重量能量密度,几乎比目前的 LIB 高一个数量级。硫的储量丰富且成本低廉也使 Li-S 电池比现有的钴基 LIB 更实惠、更环保。然而,由于一种众所周知的“穿梭效应”现象,Li-S 电池的循环性较差。 1–4 在放电过程中,正极经历多电子转化过程,其中元素硫被还原为可溶性 Li 2 S x (x = 4-8),然后终止于不溶性 Li 2 S。生成的可溶性多硫化物 (PS) 可以从正极浸出到电解质中,导致活性材料损失和电极表面钝化。这种穿梭效应导致容量衰减迅速、自放电率高和电池阻抗高。缓解多硫化物浸出的一种解决方案是在正极采用硫宿主材料。为了实现最佳的活性材料利用率和循环性能,应考虑硫宿主的极性、孔隙率和电导率,因为这些特性与其能力密切相关