计算机使用 0 和 1 的语言,本质上是向称为晶体管的计算机部件发送开启和关闭信号。这些 0 和 1 已被翻译成称为 ASCII 二进制代码的代码,其中每个字母、数字和字符都有 8 位 0 和 1 的组合。ASCII 是计算机和互联网文本文件的最常见格式。它代表美国信息交换标准代码,使用数字来表示字母和特殊字符。二进制版本仅使用 8 位(或数字)模式中的 0 和 1。
通过利用其他信息,例如(部分)错误堆栈跟踪,补丁或风险操作的操作,的指示模糊着重于自动测试代码的特定部分。 关键应用程序包括错误复制,补丁测试和静态分析报告验证。 最近有指示的模糊引起了很多关注,但诸如无用后(UAF)之类的难以检测的漏洞仍未得到很好的解决,尤其是在二进制层面上。 我们提出了UAF UZZ,这是第一个(二进制级)定向的灰色fuzzer,该灰盒源自UAF错误。 该技术采用了针对UAF指定的量身定制的模糊引擎,轻质代码仪器和有效的错误分类步骤。 对实际情况的错误复制的实验评估表明,就故障检测率,暴露时间和虫子三叶虫的时间而言,UAZ的UZZ明显优于最先进的指示fuzz。 uaf uzz也已被证明在补丁测试中有效,从而在Perl,GPAC和GNU补丁等程序中发现了30个新错误(7 CVE)。 最后,我们向社区提供了一个巨大的模糊基准,该基准专用于UAF,并建立在真实的代码和实际错误上。的指示模糊着重于自动测试代码的特定部分。关键应用程序包括错误复制,补丁测试和静态分析报告验证。最近有指示的模糊引起了很多关注,但诸如无用后(UAF)之类的难以检测的漏洞仍未得到很好的解决,尤其是在二进制层面上。我们提出了UAF UZZ,这是第一个(二进制级)定向的灰色fuzzer,该灰盒源自UAF错误。该技术采用了针对UAF指定的量身定制的模糊引擎,轻质代码仪器和有效的错误分类步骤。对实际情况的错误复制的实验评估表明,就故障检测率,暴露时间和虫子三叶虫的时间而言,UAZ的UZZ明显优于最先进的指示fuzz。uaf uzz也已被证明在补丁测试中有效,从而在Perl,GPAC和GNU补丁等程序中发现了30个新错误(7 CVE)。最后,我们向社区提供了一个巨大的模糊基准,该基准专用于UAF,并建立在真实的代码和实际错误上。
背景和目标:代码调制的视觉诱发电势(C-DEP)标志着科学文献中的里程碑,因为它们能够实现可靠的高速大脑 - 计算机接口(BCIS)进行通信和控制。通常,这些专家系统依赖于使用移位版本的二进制伪序序列的每个命令编码每个命令,即根据移动的代码闪烁的黑白目标。尽管在准确性和选择时间方面取得了出色的效果,但这些高对比度刺激为某些用户引起了眼节震荡。在这项工作中,我们提出了非二进制𝑝-ary m序列的使用,它们的级别用不同的灰色阴影编码,这是一种比传统的二进制代码更愉快的选择。首次分析了这些𝑝-ARY M序列的性能和视觉疲劳及其提供可靠的基于C-DEP的BCIS的能力。方法:在循环转移范式之后,用16位健康参与者评估了五种不同的M序列:基本2(63位),基础3(80位),基础5(124位),基本7(48位)和基地11(48位)和基地11(120位)。信号处理由3滤波器库(1-60 Hz,12-60 Hz和30–60 Hz)组成,然后进行规范相关分析。栅格延迟校正和伪影拒绝方法也应用于计算命令模板。对于每个M序列,用户执行了30次试验校准阶段,然后进行了32次试验的在线拼写任务。此外,还收集了有关视觉疲劳和满意度的定性措施。结果:用户能够达到所有𝑝 -ARY M序列的平均准确性超过98%。在准确性方面,M序列之间的差异并不显着,但在视觉疲劳方面。基数越高,用户对60 Hz和120 Hz的呈现率所感知的眼镜越少。与60 Hz相比,以120 Hz的形式显示,所有𝑝 -ARY M序列也明显较小。结论:结果表明,所有𝑝-ARY M序列都适合在基于C-DEP的BCIS中实现高速和高精度,从而随着基础的增加而降低视觉疲劳,而不会降低系统性能。可以得出结论,使用高显示率和非二进制M序列是提供基于用户友好的C-DEP BCI的有前途的替代方法。
通过利用其他信息,例如(部分)错误堆栈跟踪,补丁或风险操作的操作,的指示模糊着重于自动测试代码的特定部分。 关键应用程序包括错误复制,补丁测试和静态分析报告验证。 最近有指示的模糊引起了很多关注,但诸如无用后(UAF)之类的难以检测的漏洞仍未得到很好的解决,尤其是在二进制层面上。 我们提出了UAF UZZ,这是第一个(二进制级)定向的灰色fuzzer,该灰盒源自UAF错误。 该技术采用了针对UAF指定的量身定制的模糊引擎,轻质代码仪器和有效的错误分类步骤。 对实际情况的错误复制的实验评估表明,就故障检测率,暴露时间和虫子三叶虫的时间而言,UAZ的UZZ明显优于最先进的指示fuzz。 uaf uzz也已被证明在补丁测试中有效,从而在Perl,GPAC和GNU补丁等程序中发现了30个新错误(7 CVE)。 最后,我们向社区提供了一个巨大的模糊基准,该基准专用于UAF,并建立在真实的代码和实际错误上。的指示模糊着重于自动测试代码的特定部分。关键应用程序包括错误复制,补丁测试和静态分析报告验证。最近有指示的模糊引起了很多关注,但诸如无用后(UAF)之类的难以检测的漏洞仍未得到很好的解决,尤其是在二进制层面上。我们提出了UAF UZZ,这是第一个(二进制级)定向的灰色fuzzer,该灰盒源自UAF错误。该技术采用了针对UAF指定的量身定制的模糊引擎,轻质代码仪器和有效的错误分类步骤。对实际情况的错误复制的实验评估表明,就故障检测率,暴露时间和虫子三叶虫的时间而言,UAZ的UZZ明显优于最先进的指示fuzz。uaf uzz也已被证明在补丁测试中有效,从而在Perl,GPAC和GNU补丁等程序中发现了30个新错误(7 CVE)。最后,我们向社区提供了一个巨大的模糊基准,该基准专用于UAF,并建立在真实的代码和实际错误上。
受鸟类物种的结构颜色的启发,已经开发出了各种合成策略,以使用纳米颗粒组件产生非虹彩,饱和的颜色。纳米颗粒混合物在颗粒化学和大小中有所不同,具有影响产生颜色的其他新兴特性。对于复杂的多组分系统,了解组装结构和强大的光学建模工具可以使科学家能够识别结构颜色的关系,并用量身定制的颜色制造设计师材料。在这里,我们将如何使用计算反向工程分析来从小角度散射测量中重建组装结构,用于散射实验方法,并在有限差异时计算中使用重建的结构来预测颜色。我们成功地,定量预测包含强烈吸收纳米颗粒的混合物中的实验观察到的颜色,并证明了单层分离的纳米颗粒对产生的颜色的影响。我们提出的多功能计算方法对于具有所需颜色的工程合成材料有用,而无需艰苦的反复试验实验。
设计并实现了一款 4 位二进制加权电流控制 DAC,该 DAC 采用了适合生物医学应用的各种开关方法。虽然这种架构占用的数字面积和功率较小,但容易出现故障,尤其是在输入转换次数较多时。作者计算了具有各种开关的 4 位二进制电流控制 DAC 的 INL 和 DNL:NMOS、PMOS 和传输门 [9, 12]。DAC 的评估基于各种参数,如分辨率、功耗、稳定时间、动态范围、非线性误差 (INL 和 DNL)。本文重点介绍 INL 和 DNL。差分非线性(缩写 DNL)表示实际步长相对于理想步长的偏差,其中步长是相邻输入值的模拟输出差 [6, 10]。DAC 的 DNL 在数学上表示如下:
大脑中的肿瘤是由大脑内组织细胞不受管制的出现引起的。早期诊断并确定磁共振成像中肿瘤的精确位置(MRI)及其大小对于医生团队至关重要。图像分割通常被认为是医学图像分析中的初步步骤。k均值聚类已被广泛用于脑肿瘤检测。此技术的结果是群集图像的列表。这种方法的挑战是选择描绘肿瘤的适当簇部分的困难。在这项工作中,我们分析了不同图像簇的影响。然后将每个群集分为左右部分。之后,每个部分中都描绘了纹理特征。此外,还采用双边对称度量来估计包含肿瘤的簇。最后,采用连接的组件标记来确定用于脑肿瘤检测的靶标簇。已开发的技术应用于30个MRI图像。获得了87%的鼓励精度。
合成生物学应用了电气工程和信息处理的概念,赋予细胞计算功能。将底层分子成分转移到材料中,并根据受电子电路板启发的拓扑结构进行连接,已经产生了执行选定计算操作的材料系统。然而,现有构建块的有限功能限制了将高级信息处理电路实现到材料中。在这里,设计了一组基于蛋白酶的生物混合模块,其生物活性可以被诱导或抑制。在定量数学模型的指导下,遵循设计-构建-测试-学习 (DBTL) 循环,模块根据受电子信号解码器启发的电路拓扑进行连接,这是信息处理的基本主题。设计了一个 2 输入/4 输出二进制解码器,用于检测材料框架中的两个小分子,这些小分子可以以不同的蛋白酶活性形式执行受调节的输出。这里展示的智能材料系统具有很强的模块化,可用于生物分子信息处理,例如在高级生物传感或药物输送应用中。
摘要。本项目开发了一种新型的快速同步二进制计数方法,用于实用计数器,计数周期最小。同步二进制计数器在许多应用中都是必需的,因为它速度快,还可以支持较大的位宽。基本上,由于扇出量大和进位链长,早期计数器的计数率有限,尤其是在计数器尺寸不小的情况下。它采用单比特约翰逊计数器来降低整个硬件的复杂性,然后复制它以减少由大量扇出引起的传播延迟。在本文中,重新编程其中使用的时钟以用于以不同时钟速率运行的各种应用,并且由于重新编程时钟,延迟值会发生变化,临界值可能会因不同的速率而变化。计数器输出结果是针对各种位获得的,最高可达 64 位,因此该设计提供了各种时钟速率,面积和延迟各不相同。
智能手机在日常生活中无处不在。由于许多敏感数据存储在智能手机上,因此访问智能手机需要身份验证。然而,传统的用户名和密码并不适合移动设备,因为智能手机没有触觉键盘,这使得数据输入繁琐且容易出错。因此,有人提出了锁定图案来代替智能手机上的打字,但它容易受到分析油性残留物的反射特性的涂抹攻击(Aviv 等人,2010 年)。此外,用户名/密码和锁定图案都容易受到肩窥攻击。为了解决上述问题,智能手机上已经实现了指纹或人脸识别。然而,这些生物特征认证需要一些专门的传感器/软件,