拉格朗日乘数法。(10)数列和级数:数列、数列的极限及其性质、正项级数、收敛的必要条件、比较检验法、达朗贝尔比率检验法、柯西根检验法、交错级数、莱布尼茨规则、绝对收敛和条件收敛。(6)积分学:积分学的平均值定理、反常积分及其分类、Beta 函数和 Gamma 函数、笛卡尔和极坐标中的面积和长度、笛卡尔和极坐标中的旋转立体的体积和表面积。(12)多重积分:二重积分、二重积分的求值、三重积分的求值、积分阶数的变换、变量的变换、二重积分的面积和体积、三重积分的体积。 (10)向量微积分:向量值函数及其可微性、线积分、面积积分、体积积分、梯度、旋度、散度、平面格林定理(包括矢量形式)、斯托克斯定理、高斯散度定理及其应用。 (10)教材,
模块 I(18 小时)- 矩阵初等变换 – 阶梯形式 – 通过简化为阶梯形式利用初等变换进行排序 – 利用初等变换解线性齐次和非齐次方程。向量的线性相关性和独立性 – 特征值和特征向量 – 特征值和特征向量的性质(不要求证明) – 线性变换 – 正交变换 – 对角化 – 利用正交变换将二次型简化为平方和 – 二次型的秩、指标、签名 – 二次型的性质 模块 2(18 小时) - 偏微分 偏微分:链式法则 – 齐次函数的欧拉定理陈述 – 雅可比矩阵 – 泰勒级数在二元函数中的应用 – 二元函数的最大值和最小值(不要求证明结果) 模块 3(18 小时) - 多重积分 笛卡尔和极坐标中的二重积分 – 积分阶数变换 – 使用二重积分计算面积 – 使用雅可比矩阵计算变量变换 – 笛卡尔、圆柱和球坐标中的三重积分 – 使用三重积分计算体积– 使用雅可比矩阵改变变量 – 简单问题。模块 4(18 小时) - 常微分方程 具有常数系数的线性微分方程 - 互补函数和特殊积分 - 使用参数变异法寻找特殊积分 - 欧拉柯西方程 - 勒金德方程 模块 5(18 小时) - 拉普拉斯变换 拉普拉斯变换 - 移位定理 - 变换的微分和积分 - 导数和积分的拉普拉斯变换 - 逆变换 - 卷积特性的应用 - 单位阶跃函数的拉普拉斯变换 - 第二移位定理(不需要证明) - 单位脉冲函数和周期函数的拉普拉斯变换 - 使用拉普拉斯变换解具有常数系数的线性微分方程。
MH1802 科学微积分 本课程旨在让学生掌握 数学知识和分析技能,使他们能够应用微积分技术(以及他们现有的数学技能)来解决适用的科学问题; 数学阅读技能,使他们能够阅读和理解基础和流行科学和工程文献中的相关数学内容;以及 数学交流技能,使他们能够有效和严格地向数学家、科学家和工程师介绍他们的数学思想。内容基础 (BAS) 数字类型;函数和图形;常用函数及其图形;重要的代数、三角、对数和指数恒等式;基本复数。微积分 (DIF) 极限;微分;微分技术;微分的应用;基本偏导数。积分 (INT) 积分;积分技术;对数、指数和反三角函数的微积分;积分的应用;微分方程 (DE) 基础;一阶常微分方程;二阶常微分方程;级数、序列和微分方程。MH1812 离散数学 学习目标 本课程介绍数学和计算机科学中常用的离散数学基本概念。内容 - 计数、排列和组合、二项式定理 - 递归关系 - 图、路径和电路、同构 - 树、生成树 - 图算法(例如最短路径、最大流)及其计算复杂度、大 O 符号 MH2100 微积分 III 学习目标 这是微积分系列中的最后一门课程。本课程介绍多变量微积分。内容 参数方程、极坐标。向量值函数、向量值函数微积分、立体解析几何。多变量函数、极限、连续性、偏导数、可微分性和全微分、链式法则、隐函数定理。方向导数、梯度、拉格朗日乘数。二重积分、表面面积、三重积分。线积分、格林定理、曲面积分、高斯散度定理、斯托克斯定理。