基于可再生能源的分散式电力生产解决方案在非洲日益得到使用,以促进农村地区人口的社会融合。在这些没有电网覆盖的地区,移动网络运营商安装的网络基础设施越来越多,这些网络基础设施由发电机组供电。这些能源仅用于为站点元素提供电力,而当地居民没有电。在这些运营商站点上使用基于可再生能源(特别是太阳能)的微电网有助于实现可持续发展目标的第 7 和第 9c 项。事实上,这些微电网的智能管理可以确保向移动网络运营商站点持续供电,并利用过剩生产为当地居民提供电力。为了实现基于这些微电网的电信和能源普遍接入之间的融合,使用优化算法来更好地规划和提高这些微电网的运行效率至关重要。为此,在多源多负载系统中使用粒子群优化算法进行最佳功率流管理,以测试微电网实现这一新目标的能力。结果表明,这些微电网的最佳管理可保证电力供应损失概率为 0.18%,平准化电力成本为 0.0187 美元,最大可再生系数为 98%。获得的低电力成本表明,该解决方案是提高农村低收入人群普遍用电的真正机会。同样,获得的最大可再生系数值表明发电机组的运行时间减少,从而显著降低运营成本和温室气体排放。
关键词:逆向设计、光学超材料、物理信息学习、深度学习 光学超表面由密集排列的单元组成,这些单元通过各种光限制和散射过程来操纵光。由于其独特的优势,例如高性能、小尺寸和易于与半导体器件集成,超表面在显示器、成像、传感和光学计算等领域引起了越来越多的关注。尽管在制造和特性方面取得了进展,但对于复杂的光学超材料系统来说,对合适的光学响应进行可行的设计预测仍然具有挑战性。随着设计复杂性的增加,获得最佳设计所需的计算成本呈指数增长。此外,由于逆问题通常是不适定的,因此设计预测具有挑战性。近年来,深度学习 (DL) 方法在逆向设计领域显示出巨大的前景。受此启发以及 DL 产生快速推理的能力,我们引入了一个物理信息 DL 框架来加快超表面逆向设计的计算。添加基于物理的约束可以提高 DL 模型的通用性,同时减少数据负担。我们的方法引入了一种串联深度学习架构和基于物理的学习,通过选择科学一致、设计预测误差低、光学响应重建准确的设计来缓解非唯一性问题。为了证明这一概念,我们专注于代表性等离子体装置的逆向设计,该装置由沉积在金属基板顶部的介电膜上的金属光栅组成。该装置的光学响应由几何尺寸和材料特性决定。训练和测试数据是通过严格耦合波分析 (RCWA) 获得的,而基于物理的约束则是通过求解简化均质模型的电磁 (EM) 波方程得出的。我们考虑对单个波长事件或可见光范围内波长光谱的光学响应进行设计预测。以可见光谱的光学响应作为输入,我们的模型对于逆向设计预测的收敛准确率高达 97%。该模型还能够以高达 96% 的准确度预测设计,对于单一波长的光的光学响应作为输入,光学响应重建准确度可达 99%。
太阳能发电是将阳光转化为电能的简单概念。自然界的能量来源之一是阳光。太阳能资源已被广泛用于通过太阳能电池为通信卫星供电。这些太阳能电池没有旋转部件,也不需要燃料,它们可以产生无限量的电能,这些电能直接来自太阳。因此,太阳能系统经常被认为是纯净且对环境有益的。与主电网不相连的太阳能系统称为独立系统。因此,考虑到昼夜循环,夜间太阳辐射为 0 W / m2,拥有备用电源至关重要。备用电源通常在电网系统中联网,但在离网系统中,备用电源必须是储能系统,例如电池、水泵储能、储热或超级电容器。由于这些独立系统的电压和电流不足以满足许多用途,因此太阳能模块通常通过串联许多太阳能电池来创建。在 MATLAB/SIMULINK 环境中使用超级电容器和 PV 电池设计和仿真直流微电网电源管理系统。在电池向负载供电的启动过程中,超级电容器用于弥补任何功率不足。还考虑了电池充电和放电电流的限制。仿真结果证明了所建议的电源管理方法的有效性。在所有模拟情况下,电池和超级电容器的充电状态都保持在允许范围内,并且电源和负载之间的功率流保持平衡。在电源管理策略获得最佳调整结果后,PV 和 PID 中的最大功率点 (MPP) 的扰动和观察 (P&O) 算法根据负载要求在负载处调整最佳结果。从仿真结果可以看出,该系统具有更好的结果,因为它在 1000 W/m2 期间补偿了多余的负载功率,并将电池输入增加了 162.261 W,即 69.836%。由于超级电容器作为二次储能的作用,因此影响不大。
第 2 部分:钙钛矿层光提取方向模拟细节考虑到 PeLEC 在自发发射模式下运行,我们考虑将一个方位角可变超过 360°(计算期间)的光学点偶极子放置在钙钛矿层内作为发光源。在 SI 图 S1(a) 中,有一个 PeLEC 的光发射提取曲线与点偶极子方向的组合,其中沿基底表面(即在小角度下)实现了最大提取效率,约为 13%。随着点偶极子方向角度的增加,提取效率急剧下降。根据发射光电场矢量模量图,参见 SI 图 S1(b),对于对提取效率贡献最大的较小角度(< 45°),观察到类似于各向同性的角度分布。在这种情况下,我们能够对点偶极子方向角上的提取效率进行平均,并确定平均提取效率,考虑到方位角,平均提取效率为 9.2%。因此,实验观察到的数据可以通过以下假设来解释:大部分 PeLEC 的光发射都被 Si 基板吸收。
有机金属卤化物钙钛矿 (OMHP) 是快速、灵敏、大面积光电探测器的有希望的候选材料。在过去十年中,已经开发出几种具有互补优势的技术。薄膜器件很薄,可以扩展到大面积,但具有大量与晶界相关的缺陷。单个块体晶体的纯度更高,但更厚,不易在大面积上生产。在这项工作中,我们介绍了一种微流体辅助技术,可直接在导电图案化基板上实现 OMHP 单晶(微线形式)的受控生长。该技术可以实现具有像素化传感器层的垂直设备。由此产生的设备具有增益、高达 200 AW − 1 的响应度和低至 35 μ s 的快速上升时间。这是首次使用微流体辅助技术在图案化基板上实现 OMHP 垂直设备的演示。
量子到经典的转变是推动量子系统向其物理配置的完全经典描述的过程,其现象学是大量研究的对象。事实上,这种转变是否归因于新的基础物理学是一个有争议的问题 [1]。特别是,一个复杂性和规模不断增长的量子系统的退相干是否可以归因于内在机制或仅仅是周围环境的不可避免的存在,这仍存在争议 [2,3]。由于环境退相干不能为测量问题提供令人满意的解决方案,从而也不能为量子到经典的转变问题提供令人满意的解决方案,因此坍缩模型体现了另一种理论框架 [4,5]。通过将波函数坍缩提升为一种嵌入随机动力学的普适物理机制,坍缩模型以现象学的方式解释了量子到经典的转变,从而体现了量子力学的宏观现实修改的一个实例。这种修改是通过随机薛定谔方程和引入新的基本参数实现的。当用于评估微观系统的动力学时,坍缩模型的框架恢复了标准量子力学。对于更大的系统,相干性会迅速被抑制,以防止宏观可区分状态的大规模空间叠加。连续自发局部化 (CSL) 是研究最深入的坍缩模型之一 [6, 7]。它通过将额外的耗散项进入量子系统的主方程来描述位置基中相干性的丧失。这意味着,受坍缩机制影响的开放量子系统应该经历额外的耗散,而这种耗散不能归因于任何其他环境噪声源。测试这个模型是目前探索量子力学有效性极限的重要课题 [ 8 ]。然而,目前在量子力学中使用的大多数系统都预测了坍缩效应,
摘要 我们的研究团队 ISLAND CURE 是一个由教授和本科生组成的多学科团队,其目标是在有限的预算内设计和制造用于进行生物测量的仪器。我们正在设计的仪器之一是光镊,这是一项获得诺贝尔奖的技术,能够使用激光束捕获微观和亚微观粒子。使用 1064 nm 光束,我们将使用珠子捕获单链 DNA,这将使我们能够对 DNA 施加微小的力。这个实验将使我们更好地了解受损 DNA 上的力量;特别是导致突变和癌症的损伤。有了这些知识,我们的目标是能够深入了解诱变和癌症的发展,以及理想情况下如何治疗和预防它们。我们的工作是找到一种方法来准备一个载玻片,其中可以附着单个 DNA 片段,以便在倒置显微镜装置中使用。
• 偏振纠缠 实现 • 宽带和单独信道纠缠 实现 • 下一步 基于纠缠的 QKD 多用户 QKD 全光纤集成、基于 WDM 的纠缠光子源,面向多用户 QKD
