1 马来西亚国家能源大学可持续能源研究所,Jalan IKRAM-UNITEN,43000 Kajang,雪兰莪,马来西亚;2 印度 Graphic Era 机械工程系(视为大学),德拉敦,北阿坎德邦 248002;3 波兰奥波莱理工大学机械工程学院,奥波莱,45-758;4 沙特阿拉伯艾卜哈 61421 哈立德国王大学工程学院机械工程系;5 沙特阿拉伯艾卜哈 61421 哈立德国王大学工业工程系;6 埃塞俄比亚阿达玛科技大学机械、化学与材料工程学院化学工程系,阿达玛 1888;7 马来亚大学工程学院机械工程系,马来西亚吉隆坡 50603; 8 低碳/零碳能源技术实验室,工程与建筑学院,雷杰普·塔伊普·埃尔多安大学,Zihni Derin 校区,53100 里泽,土耳其;9 机械工程系,工程与建筑学院,雷杰普·塔伊普·埃尔多安大学,Zihni Derin 校区,53100 里泽,土耳其;10 工程与建筑环境学院,伯明翰城市大学,B4 7XG,伯明翰,英国;11 机械工程系,普里亚达希尼工程学院,纳格浦尔,马哈拉施特拉邦,印度;12 影响与成果研究中心,奇特卡拉大学工程与技术研究所,奇特卡拉大学,拉杰普拉,旁遮普邦,140401,印度
灵活的混合光电集成集成在实现低温性方案基板上的高性能设备的低成本制造之前,面临着几个基本挑战。这些低成本基板通常会带来严格的处理要求,从而导致关键的制造问题。新兴技术,例如激光或基于灰灯(所谓的光子)后加工后处理的烧结,可替代传统烤箱的热敏感底物处理。1 - 8通过仔细调整每种材料的加工条件,可以在同一设备上独立处理多个薄LM,而无需高速退火和高速。用金属纳米颗粒制成的薄lm需要用少量的高功率密度脉冲来处理高密度导电lms。9,10对于陶瓷材料,较大的低功率脉冲倾向于改善
然而,石墨烯设备物理学的一个重要结果是,有必要将石墨烯单层封装在两片绝缘二维材料六角型硝酸硼(HBN)之间,以实现理想的较高的运输特性。[27,28]此包封可确保在环境条件下进行化学稳定,因为石墨烯受到保护不受大气吸附物的保护。封装还可以确保原子上的石墨烯片,从而实现室温弹道传输。[27]因此,HBN中石墨烯的封装已迅速成为设备社区中的标准平台,并且很可能成为潜在的未来石墨烯设备行业中的主要平台。此外,扭曲的双层石墨烯的生长领域完全取决于HBN封装以生产扭曲的双层。石墨烯和HBN之间的强范德华吸引力是使石墨烯晶体一部分精确的角度堆叠到自身上的方法。[28,29]
在这项工作中,我们提出了一套可重复的测试问题,以进行大规模优化(“逆设计”和“拓扑优化”),在这些问题中,不规则,非直觉几何的流行率否则,可以使新的算法和软件正常发挥作用,使其具有挑战性。我们包括测试问题,可以行使各种物理和数学特征,即far-Far-filed Metalenss,2D和3D模式转换器,谐振剂发射和聚焦以及分散/特征值工程 - 并引入A Persteriori aperteriori长度尺度测量,以比较由异性算法产生的设计。对于每个问题,我们都会对多个独立的软件包和算法进行交叉检查,并包括可重复的设计及其验证脚本。我们认为,此套件应该使开发,验证和获得对未来的deSignAppLaikeSandSoftware的信任变得更加容易。©2024 Optica Publishing Group
电磁频率扫描方法(EOF)在微波网络分析仪(MNA)的帮助下广泛使用,以将光学转换为电测量[1,2]。在晶状体级别的情况下,光电收集器芯片被视为层叠的电气 - 光电极(E-O-E)链路,该链接包含包括强度调制器(IM)芯片和光电二极管(PD)芯片(PD)芯片的chip,并通过散射参数在参考平面上表征的M1-D2-2-D2-2均匀表征。附录A中显示了详细的传输和散射矩阵。由于测得的结果由IM和PD构成贡献,因此必须通过将整数收发器分解为离散的IM或PD芯片,以与O-E或E-O-O-O-O-O TransDucer Standards相结合,以使IM或PD的个体响应进行隔离。
摘要:本文介绍了一种用于光伏系统的三相交错升压转换器的突破性设计,利用并联的传统升压转换器来降低输入电流和输出电压纹波,同时提高动态性能。这项研究的一个显着特点是将锂离子电池直接连接到直流链路,从而无需额外的充电电路,这与传统方法不同。此外,MPPT 控制器和闭环模糊控制器与电流控制模式的组合可确保为所有三个相位生成准确的开关信号。精心调整的系统在输出电压中表现出非常低的纹波含量,超过了计算值,并表现出卓越的动态性能。研究延伸到对损耗的全面分析,包括电感器铜损和半导体传导损耗。在所有情况下,转换器的效率都超过 93%,凸显了其作为光伏系统有效解决方案的强大性能。
铅锆钛酸盐(PZT)是一种广泛用于微电动机电(MEMS)技术的压电材料,主要是由于其强烈的压电和机电耦合系数[1]。然而,由于PT缓冲液的损失,传统上用于生长PZT薄膜[2],因此其在光子综合电路(图片)中的应用受到限制。通过化学溶液沉积(CSD)方法[3],具有透明缓冲层(LA 2 O 2 CO 3)生长的PZT膜[3],并通过Pockel的调节证明了其在光子应用中的潜力[4]。但是,在这种方法中使用的薄缓冲层的自旋涂层需要平面样品表面,从而限制了其范围。微转移打印(µ tp)可能是绕过这种瓶颈的一种方法[5]。在本文中,我们报告了悬挂的长度高达4 mm的悬挂式PZT优惠券,宽度高达120 µm。然后,我们成功传输了SI基板上的PZT优惠券。这些结果证明了一种可以使PZT膜在芯片的所需位置中稳定的,而完整芯片均匀地平面化的技术。此外,此方法可以为各种光子学应用程序设计MEMS执行器提供额外的自由。
摘要:5G基站的广泛安装引起了显着的能源消耗激增,以及与达到碳中立性的相结合的情况。众多研究表明,分布式光伏(PV)和储能系统(ESS)的掺入是一种有效的措施,可减少实用性网格中的能源消耗。根据当地条件对PV和ESS设置的优化对基地电源系统的经济和生态益处有直接影响。在本文中提出了改进的基站电源系统模型,该模型考虑到转换器的行为。通过此,确定了考虑经济和生态因素的多方面评估标准。然后,实现了多种情况下基站的PV和ESS容量优化。案例研究表明,PV和ESS的优化过程受到转换器的行为的影响。
来自多个中心的大脑磁共振成像(MRI)数据通常在成像条件下表现出差异,例如所使用的核磁共振仪器的类型和随机噪声的存在。此外,MRI切片之间差距的差异进一步使数据的可用性复杂化了高级人工智能(AI)分析。基于深度学习的方法已成为解决挑战的实用解决方案。然而,现有的研究在很大程度上忽略了大脑MRI数据的增强,尤其是在面对明显的切片间隙时,例如在我们的临床大脑MRI切片中观察到的大约6 mM。响应这一研究差距,我们旨在开发新的方法来增强大脑MRI数据,重点关注更大的切片差距。为了实现这一目标,我们提出了SOFNET,它利用了基于光流和编码器 - 二次骨架的sofnet。我们模型的主要目标是插值MRI切片,同时保持特征一致性。利用光流法,与其他超分辨率算法相比,该方法表现出了出色的性能,我们提出的方法已在三个不同的大脑MRI数据集上进行了评估,并明确解决了4.2 mm和6.0 mm之间的差距。实验结果强调了SOFNET在生成适应的脑MRI数据方面获得的超分辨率质量的显着增强,超过了其他单位超级分辨率(SISR)方法。为了确保插值脑MRI切片的可信度,我们基于诸如峰值信噪比(PSNR)和结构相似性指数(SSIM)等指标(例如峰值信噪比(PSNR))对三个MRI进行了实验。这些实验证明了我们方法在将低分辨率MRI数据转换为清晰可靠的大脑MRIS中的有效性,从而可以使用AI技术进行了改进的分析。
最近,铅卤化物钙钛矿吸引了显着的注意力,作为光电化学(PEC)太阳能分裂的有前途的吸收材料。然而,界面处的电荷积累诱导的离子迁移导致钙钛矿降解和效率损失。为了抑制电荷积累并改善了钙钛矿光阳极的PEC性能,提出了一种简单的界面工程,通过用聚乙基乙酰基(PEIE)(PEIE)和氯贝苯甲酸(CBSA)的混合物来装饰SNO 2 /Perovskite界面。混合的CBSA + PEIE处理有效地钝化了SNO 2中的氧空位,并调整了SNO 2和钙钛矿之间的带对齐。混合物处理的协同作用促进了在SNO 2 /Perovskite界面上有效的载体提取,增强了PEC性能并提高设备的稳定性。Perovskite Photoanode表现出令人印象深刻的偏置光子至电流效率为12.9%,出色的耐用性为225 h。此外,使用所有Perovskite光电子界实现了公正的太阳能分裂,从而导致显着的无辅助太阳能到氢气的效率为10.9%,并且连续22 h稳定的操作。