目前,基于细胞的生物传感器已从单纯的分子生物受体替代品发展成为将分子机制和基因电路与微电子连接起来并开发突破性传感和诊断平台的工具。本文回顾了有关全细胞生物传感器的最新文献,重点介绍了哺乳动物细胞,以及通过新型生物传感概念和合成生物学工具箱为生物医学分析带来的挑战和突破。这些最新创新使得基于细胞的生物传感平台的开发成为可能,这些平台具有量身定制的性能,能够达到适合高分析/医学相关性的灵敏度、动态范围和稳定性水平。它们还为构建灵活的生物传感平台铺平了道路,这些平台可用于生物研究和临床应用。这项工作旨在激发人们对基于细胞的生物传感器生成的兴趣,并提高其接受度和利用率。
尽管有针对CF跨膜电导调节剂(CFTR)功能的靶向疗法最近进展,但囊性纤维化患者(CF)的预后却有所不同。尽管是多器官疾病,但广泛的肺组织破坏仍然是发病率和死亡率的主要原因。朝着一种治疗治疗策略的进展,该治疗策略在患者的肺部实现CFTR基因添加技术的进展缓慢,尚未在临床试验之外发展。需要改进的递送向量来克服人体的防御系统,并在基因治疗适合临床护理之前确保有效且一致的临床反应。基于细胞的治疗(基于细胞的治疗)依赖于在移植到患者之前的同种异体或自体细胞的功能修饰 - 现在是各种疾病的治疗现实。对于CF,开创性的研究证明了将培养的人类气道干细胞同种异体移植到小鼠气道中的原则证明。但是,将基于细胞的疗法应用于人类气道有不同的挑战。我们使用病毒和非病毒输送策略回顾了CF基因疗法,并讨论了基于自体细胞疗法的当前进展。讨论了合适的再生细胞的识别,校正和扩展的进展,并讨论了预先细胞移植肺部调理方案的修复。
图表:制造和测试最终产品以获得营销授权;改编自:IFPMA:疫苗的复杂历程(2014 年)和 Philippe Juvin – Sanofi Pasteur 的演讲(ADVAC 课程,Les Pensieres 2019 年 5 月 15 日),经许可转载
抽象巨噬细胞是体内最重要的吞噬细胞。然而,肿瘤微环境可以影响巨噬细胞的功能和极化,并形成肿瘤相关的巨噬细胞(TAM)。通常,肿瘤中TAM的丰度与预后不良密切相关。临床前研究已经确定了调节肿瘤进展过程中TAM的浸润和极化的重要途径。此外,已经研究了针对肿瘤中TAM的潜在治疗策略,包括抑制肥大募集到肿瘤对肿瘤的抑制,对抗肿瘤表型的功能重新极化以及其他会导致巨噬细胞介导的细胞外细胞吞噬细胞和静脉内的细胞癌细胞的治疗策略。因此,随着肿瘤免疫疗法的影响不断增加,现在正在讨论针对TAM的新抗肿瘤策略。
癌症可能会通过将肿瘤微环境重新向免疫抑制状态重新布线来逃避宿主免疫系统的消除。 转化生长因子-β(TGF-β)是一种分泌的多功能细胞因子,强烈调节免疫细胞的活性,而同时可以促进癌细胞侵袭和诸如癌症相关成纤维细胞的出现等恶性特征。 tgf-β在癌症中表现出良好的表达,并且最常见的是与临床不良结局相关的丰度。 免疫治疗策略,尤其是T细胞检查点阻滞疗法,到目前为止,仅在少数癌症患者中产生临床益处。 TGF-β活性的抑制是提高T细胞检查点阻断疗法疗效的一种有前途的方法。 在这篇综述中,我们简要概述了TGF-β在生理和恶性环境中的免疫调节功能。 然后,我们旨在考虑TGF-β的治疗靶向如何导致最先进的免疫疗法的扩展适用性和成功。癌症可能会通过将肿瘤微环境重新向免疫抑制状态重新布线来逃避宿主免疫系统的消除。转化生长因子-β(TGF-β)是一种分泌的多功能细胞因子,强烈调节免疫细胞的活性,而同时可以促进癌细胞侵袭和诸如癌症相关成纤维细胞的出现等恶性特征。tgf-β在癌症中表现出良好的表达,并且最常见的是与临床不良结局相关的丰度。免疫治疗策略,尤其是T细胞检查点阻滞疗法,到目前为止,仅在少数癌症患者中产生临床益处。TGF-β活性的抑制是提高T细胞检查点阻断疗法疗效的一种有前途的方法。在这篇综述中,我们简要概述了TGF-β在生理和恶性环境中的免疫调节功能。然后,我们旨在考虑TGF-β的治疗靶向如何导致最先进的免疫疗法的扩展适用性和成功。
青光眼是世界上视力丧失的主要原因之一,其特征是视网膜神经节细胞(RGC)的功能障碍。青光眼的早期病理机理是RGC的轴突的变性,发现可以预防轴突变性的新疗法引起了极大的关注。在许多神经退行性系统中,增加辅酶烟酰胺腺苷二核苷酸(NAD)的浓度已被证明是轴突保护性。增加NAD可以通过增加参与神经元NAD,烟酰胺单核苷酸腺苷转移酶2(NMNAT2)的末端酶的催化特性来实现。nmnat2是理想的治疗靶标。多酚A(PA),这是一种不会披露的多酚,已被证明是通过NMNAT2的正调制来提高NAD的。的目的是开发一种基于细胞的测定法,用于筛选PA和12个新型PA的类似物,以在从C57BL/6J小鼠中分离出脑皮质,视网膜和肝细胞中其NAD促进作用。进行了使用生物发光测定的方案,以优化变量,例如细胞浓度,底物(烟酰胺)浓度,PA浓度和孵育时间。该方法开发产生了一日测试PA及其在皮质细胞中类似物的方案。pa及其几个类似物表现出NAD促进效应。该方案以及筛选的结果可以进一步用于开发可预防青光眼以及其他轴突和神经退行性的新型药物。
摘要 背景 嵌合抗原受体 T 细胞 (CAR-T) 的过继细胞疗法已经成为某些侵袭性 B 细胞恶性肿瘤患者的标准治疗方法,并有望在未来改善许多其他癌症患者的护理。然而,CAR-T 细胞疗法的高制造成本对其更广泛的临床应用构成了重大障碍。CAR-T 生产的主要成本驱动因素包括用于 T 细胞活化的一次性试剂和临床级病毒载体。起始材料中存在不同数量的污染单核细胞对 CAR-T 制造构成了额外的挑战,因为它们会阻碍 T 细胞刺激和转导,导致制造失败。方法我们创建了基于 K562 的人工抗原呈递细胞 (aAPC),具有基因编码的 T 细胞刺激和共刺激,这是 T 细胞活化的取之不尽的来源。我们还使用 CRISPR-Cas9 基因编辑核酸酶破坏了这些 aAPC(aAPC- Δ LDLR)上低密度脂蛋白受体 (LDLR) 的内源性表达,以防止意外慢病毒转导并避免转导过程中对病毒载体的吸收效应。使用各种 T 细胞来源,我们通过基于 aAPC- Δ LDLR 的激活产生了 CD19 导向的 CAR-T 细胞,并在体外和体内测试了它们对 B 细胞恶性肿瘤的抗肿瘤效力。结果我们发现 aAPC- Δ LDLR 上缺乏 LDLR 表达会导致 CAR-T 生产过程中对慢病毒转导产生抗性。使用 aAPC- Δ LDLR,我们甚至可以从未纯化的起始材料(如外周血单核细胞或未经处理的白细胞分离术产品,其中含有大量单核细胞)中实现 CAR-T 细胞的有效扩增。我们通过基于 aAPC- Δ LDLR 的扩增产生的 CD19 定向 CAR-T 细胞在急性淋巴细胞白血病和 B 细胞淋巴瘤的临床前模型中表现出强大的抗肿瘤反应。结论我们的 aAPC- Δ LDLR 代表了一种用于制造慢病毒转导 T 细胞的有吸引力的方法
对基于细胞的测定的准确分析取决于整个板中每个孔中播种和分布的一致性细胞。初始播种密度的差异将导致整体生长曲线的差异,这可能会对细胞对药物治疗的反应产生巨大影响(Niepel等人。2017)。诸如混合差和气泡之类的移移误差会导致细胞分布和从测定之间的变异性不均匀。在测定开始时优化移液和播种技术对于产生一致和准确的结果很重要。
2. 接种环在火焰中加热灭菌,冷却后从试管中取出一环细菌培养物。3. 用左手掀起培养皿盖,以 60º 角将接种物放置在琼脂表面,将接种物从一侧划到另一侧,形成平行线,划过区域表面。4. 接种环重新燃烧并冷却,进一步将培养皿旋转 90º 角,使接种环接触区域 1 中培养物的一角,将接种物划过区域 2 中的琼脂,如图所示。应当注意,接种环绝不能再进入区域 1。5. 现在使用琼脂表面的其余部分完成划线。6. 完成划线后,盖上培养皿盖,再次用火焰对接种环进行灭菌。 7. 将培养皿倒置在 37ºC 下孵育 24-48 小时。
摘要 — 用微结构和纳米结构装饰的平面是生物医学研究中的重要工具,用于控制细胞形状,研究机械传导、膜力学、细胞迁移以及细胞与纳米结构表面的相互作用。现有的制造表面结合纳米结构的方法通常受分辨率、纵横比或吞吐量的限制。在这项工作中,我们探索了基于电子束光刻的玻璃基板上环氧抗蚀剂 SU-8 的结构。我们专注于系统地研究工艺参数,并确定制造工艺的极限,包括空间分辨率、结构纵横比和制造吞吐量。所述方法能够直接在透明基板上生产高纵横比、表面结合纳米结构,其高度范围为 100 nm 至 4000 nm,平面分辨率低于 100 nm。制造的纳米结构表面可以与生物医学研究的常用技术相结合,例如高数值孔径光学显微镜。此外,我们还展示了如何使用所述方法在同一表面上制造具有多种高度的纳米结构,这是使用其他制造方法无法轻易实现的。我们的研究为制造纳米结构表面并应用于生命科学研究开辟了一条替代方法。