封面照片:“这些 SeaWiFS 图像显示了中国大型沙尘暴的发展过程,以及它与气象系统的相互作用,后者将沙尘带到了遥远的太平洋。在第一张 1998 年 4 月 16 日拍摄的图像中,靠近海岸的亮黄褐色云层是沙尘暴的中心,被锋面系统推动。在 4 月 20 日至 24 日的后续图像中,低压系统周围的大气环流夹带了沙尘暴,并将其带到北太平洋。4 月 25 日,此次沙尘事件产生的沙尘到达了北美西海岸。” 致谢:特别感谢美国国家航空航天局 SeaWiFS 项目 Orbimage Inc.、戈达德太空飞行中心分布式主动档案中心和中国杭州第二海洋研究所。SeaWiFS 图像由美国国家航空航天局戈达德太空飞行中心 SeaWiFS 项目的 Norman Kuring 制作。页面设计由研究和专业服务部的 Robert Simmon 完成。随附文本由 Raytheon ITSS 的 James Acker 撰写。http://eosdata.gsfc.nasa.gov/CAMPAIGN_DOCS/OCDST/asian_dust.html 免责声明:本文件中使用的名称和材料的呈现方式并不意味着联合国秘书处对任何国家、领土、城市或地区或其当局的法律地位,或对其边界或边界的划分发表任何意见。意见、图
自太空时代开始以来,JPL 的太空飞船已经造访过太阳、月球和所有八大行星,有些甚至已经完全飞出太阳系。JPL 将旅行者号、伽利略号和卡西尼号送往外行星,将探测器送上火星,绘制金星云层覆盖的表面,并为尼尔·阿姆斯特朗在月球上迈出“一小步”铺平道路,而 JPL 最初是一个由和平主义者管理的军用火箭研究机构,而他当时只是想探索高层大气。加州理工学院喷气推进实验室非正式成立,当时航空学教授西奥多·冯·卡门 (Theodore von Kármán) 的研究生弗兰克·马利纳 (Frank Malina) [MS ME '35, MS AE '36, PhD '40] 和一些朋友在 1936 年在干河道中试射了一台火箭发动机。JPL 自 1958 年以来一直退出火箭业务,成为其成功开发美国第一颗卫星“探险者 1 号”的牺牲品。“探险者 1 号”是为回应 1957 年 10 月发射的 Sputnik 而发射的,Sputnik 标志着苏联对低地球轨道的主权。1957 年 8 月,世界上第一枚洲际弹道导弹(俄罗斯制造)发射升空,每隔 96 分钟就会飞过上空,斯普特尼克号提醒紧张不安的美国,核弹头也可以很容易地发射到那里。这是 JPL 从武器实验室到行星探测器的历程。
• 天气条件可以决定能源供应和需求。例如,持续高压导致的夏季风旱*既会减少能源供应,也会推高公共和私人空间的制冷能源需求。 • 极端天气条件会影响可再生能源的运营和生产。 • 英国可再生能源部门未来对复合低风和低太阳能事件的适应能力需要进一步考虑,特别是如果复合事件连续几年持续的话。 • 传统预测更适合预测风力发电,因为类似的风力条件通常在地理上分布广泛。然而,影响太阳能发电的条件,如云层覆盖或气溶胶,可能更加局部化。与传统预测相比,局部建模可能更适合预测太阳能发电。 • 随着可再生能源基础设施的扩大,可再生能源发电能力不断提高,对存储的需求减少。然而,始终需要保持一定的存储容量。 • 通过使用跨越多年的历史数据作为模型的输入,可以改进对未来天气状况的预测,但也需要考虑十年变化和长期气候变化。 • 专家之间建立气象和能源生产合作的额外机制将是有益的,更广泛地宣传现有机制也将大有裨益。 • 数据生产者和数据接收者需要有效沟通,以确保数据集同质化,便于交换和使用。 1. 当前能源部门的脆弱性 1.1 可能限制风能和太阳能供应的天气条件
ASAP,2020 年 5 月 电池技术正在成为解决因日照条件变化而导致的太阳能光伏发电不稳定问题的解决方案。清晨和傍晚时分,可用于光伏发电的日照 (日照) 较少,中午时分日照最强。图 1 显示了万里无云天气下光伏电站的每日发电情况。太阳能光伏技术将阳光转化为电能,而云层会减少可用于光伏发电的日照,这进一步使光伏发电水平复杂化。换句话说,电力储存对于平稳的光伏电力供应至关重要。目标是创建一个光伏电力系统,提供可靠的、按需 (可调度) 的高峰期电力供应 (参见图 2)。这需要光伏电力储存,而电池是一种储存选择。目前,电池储存用于削峰填谷,目前的设施有两到四个小时的储存时间 (参见图 3)。光伏电力的电池储存在几个方面都很有吸引力。电池的优点是可靠性、响应速度快、维护成本低,而且只需要几英亩的土地。电池存储设施可以位于光伏站点,以优化光伏向市场中心的传输。存储光伏直流电的过程是高效的,因为电池可以接收
1 日本遥感技术中心,东急 REIT 虎之门大厦 3F,日本东京都港区 3-17-1 – (takaku, fumi_og, dotsu_masanori)@restec.or.jp 2 日本宇宙航空研究开发机构地球观测研究中心,日本茨城县筑波市浅间 2-1-1 – tadono.takeo@jaxa.jp 委员会 IV,工作组 IV/3 关键词:三线、立体、卫星、光学、高分辨率、DEM/DTM 摘要:2016 年,我们首次使用来自先进陆地观测卫星 (ALOS) 上的立体测绘全色遥感仪 (PRISM) 的立体影像整个档案完成了数字表面模型 (DSM) 的全球数据处理。该数据集以 30 米网格间距免费向公众发布,名为“ALOS World 3D - 30m (AW3D30)”,该数据集由其原始版本生成,该版本以 5 米或 2.5 米网格间距处理。此后,该数据集已更新,通过额外的校准提高了绝对/相对高度精度。但是,应应用最重要的更新来提高数据可用性,即填充空白区域,这相当于约全球覆盖率的 10%,主要是由于云层覆盖。本文介绍了 AW3D30 的更新,通过与其他开放获取 DSM(如航天飞机雷达地形测绘任务 (SRTM) 数字高程模型 (DEM)、先进星载热辐射和反射辐射计全球 DEM (ASTER GDEM)、ArcticDEM 等)之间的相互比较,填补了这些数据集的空白。
我们只是丛林中天空中的一粒小点。下面,但不远的地方,是一片连绵不断的树冠,向四面八方延伸,消失不见:亚马逊森林。今天的云层低矮而灰暗,我们脚下的地形看起来极其荒凉,我们那架吵闹的小型双引擎飞机在五百英尺左右的空中顽强地飞行,这是一个危险的高度,空气像变酸的牛奶一样凝固。我们从马瑙斯市向北飞行。偶尔,飞机会向上倾斜二十或三十英尺。或者它会下沉。当我们试图将注意力集中在地面上时,它像风筝一样颠簸。根据我的经验,在这种情况下飞行大约一个小时,我的胃可以忍受。“如果飞行员迷路了,”汤姆·洛夫乔伊在引擎的男中音呜呜声中喊道,“我们可能会到达委内瑞拉。”然后他朝我露出了花栗鼠般的笑容。从我们悬空的位置看去,森林看起来只不过是平坦和叶绿素的宏伟抽象——神秘、单调、绿色。至少,这是第一眼看到的。但宏伟的抽象背后隐藏着丰富的细节,第二眼和第三眼我就能分辨出一些细节。绿色分解成数百种不同的色调,代表着数百种不同的树种。这里和那里,有一棵树的树冠点缀着它,树冠上盛开着鲜艳的黄色或洋红色。一些地方,蒸汽像棉花一样升起,那里是潮湿的气息。
研究声明I研究了海洋上的降水,云系统和耦合的海洋 - 大气边界层过程。这包括云微物理学,对降水和云层的大规模强迫以及云,降水,空气通量和耦合边界层演化如何相互影响。我还研究这些过程如何影响天气和气候变化。i收集和分析现场观察结果,使用卫星观察以及与建模团队合作,以提高过程水平的理解,发展算法,确定观察能力和需求,并使用面向过程诊断的模型进行评估。研究兴趣空气通量及其在大气和海洋边界层共同发展中的作用;使用对云和雨水,雨,卫星和序列仪的双极和单极化雷达的观测值进行气象,降水和云的研究;定量降水估计,降水分类和近地表海洋稳定性的算法;对卫星和原位观察的气象和物理海洋学过程的调查;基于观察性的大气动力学,物理海洋学以及天气尺度和中尺度气象的研究;使用原位测量值来评估和改善环境预测模型和遥感产品。教育2012-2016博士大气科学,科罗拉多州立大学顾问:史蒂文·A·鲁特里奇;联合顾问:詹姆斯·N·穆姆(俄勒冈州立大学)论文:“热带温暖池降雨的变化和对上海的影响
1966 年 8 月 18 日,澳大利亚皇家军团第六营 D 连在与越南敌军的军事行动中表现出非凡的英雄主义。“在越南共和国福绥省巴地东北部的一个橡胶种植园中搜寻越共时,D 连遇到了越共,并立即展开了激烈交战。随着战斗的发展,D 连的士兵显然面临着数量上占优势的部队。D 连的排被一支增援敌军包围,四面八方使用自动武器、轻武器和迫击炮攻击。D 连的士兵们勇敢地与装备精良、意志坚定的敌人作战,保持队形,形成共同的防御圈,给越共造成了重大伤亡。敌人持续不断地猛烈射击,从各个方向反复攻击。每次进攻都被勇敢的澳大利亚人击退。大雨和低云层阻碍了友军在战斗中提供任何近距离空中支援。经过三个小时的猛烈攻击,未能突破。:\澳大利亚防线,敌人撤离战场,伤亡惨重,留下 245 名越共士兵死在 D 连的防御阵地前。D 连的英勇、无畏和不屈不挠的勇气体现了军事勇气的最高传统,为 D 连、第六营、澳大利亚皇家军团和澳大利亚军队赢得了巨大的荣誉。2.美国总统授予越南共和国武装部队下列部队总统单位嘉奖(陆军),根据 AR 672-5-1 的第 1D4 段予以确认。嘉奖文本由林登·约翰逊总统于 1968 年 5 月 2 日签署,内容如下:凭借我作为美国总统和美国武装部队总司令所赋予的权力,我
在标题页上,从左上角开始顺时针方向:1. 2021 年 5 月 18 日,在一次多国演习中,两架美国空军 F-35A Lightning II 飞机和两架法国阵风飞机在法国上空飞行时打破队形。来源:空军中士亚历山大·库克。2. 这张 2022 年 7 月 12 日曝光的图像由美国宇航局的詹姆斯·韦伯太空望远镜在红外光下拍摄,显示了船底座星云中附近年轻的恒星形成区域 NGC 3324,揭示了之前被遮蔽的恒星诞生区域。来源:NASA、ESA、CSA 和 STScI。3. 一架 UAS 飞入 Pebble Hill 位置 Block B/Unit C2 的烟柱中,Tall Timbers 研究站。来源:USGS/Todd Hoefen。 4. 2022 年 1 月 31 日,猎鹰 9 号火箭从佛罗里达州卡纳维拉尔角太空军基地发射。图片来源:太空军 Joshua Conti。5. GOES-17 卫星捕捉到了这幅由 Hunga Tonga-Hunga Ha'apai 火山水下喷发产生的巨大云层的图像,拍摄于 2022 年 1 月 15 日。图片来源:NASA 地球观测站,图片由 Joshua Stevens 使用 NOAA 和 NESDIS 提供的 GOES 图像拍摄。6. 这张照片由火星 2020 号航天器下降级上的相机拍摄,显示了 NASA 的毅力号火星车在 2021 年 2 月 18 日着陆火星之前的样子。图片来源:NASA/JPL-Caltech。
摘要:冰的形成仍然是气候模型中代表最差的微物理过程之一。虽然已知主要的冰生产(PIP)参数化对建模的云特性具有很大的影响,但次级冰产生(SIP)的表示不完整,因此其相应的影响在很大程度上是毫无疑问的。此外,冰的聚集是总云冰预算的另一个重要过程,这在很大程度上也不受限。在这项研究中,我们使用挪威地球系统模型(Noresm2)研究了PIP,SIP和ICE聚集对北极云的影响。具有预后和诊断PIP的模拟表明,仅异质冻结不能再现观察到的云冰含量。Noresm2中缺失的SIP机制(胶水分解,掉落和升华分解)的实施可改善建模的冰属性,而液体含量中的图案仅在预后PIP的模拟中发生。但是,结果对碰撞分裂的描述很敏感。这种机制在所检查的条件下占主导地位,对升华校正因子的治疗非常敏感,升华校正因子的治疗是一种受使用的参数的约束参数。最后,冰聚集处理的变化也可以显着影响云特性,这主要是由于它们对碰撞分手效率的影响。总体而言,通过添加SIP机制来增强冰产量和冰聚集的减少(与浅北极云的雷达观察一致)导致云层覆盖率和降低TOA辐射偏见,与卫星测量相比,尤其是在寒冷的月份。