摘要 - 非事物网络(NTN)对于无处不在的连通性至关重要,可在遥远和非层面区域提供覆盖范围。但是,由于目前NTN是独立运作的,因此他们面临诸如隔离,可扩展性有限和高运营成本等挑战。与地面网络集成卫星的明显,提供了一种解决这些局限性的方法,同时通过应用人工智能(AI)模型实现自适应和成本效益的连接。本文介绍了Space-O-Ran,该框架将开放式无线接入网络(RAN)原理扩展到NTN。它使用分布式空间运行智能控制器(Space-rics)的层次结构闭环控制,以动态管理和优化两个域之间的操作。为了启用自适应资源分配和网络编排,所提出的体系结构将实时卫星优化和控制与AI驱动的管理和数字双(DT)建模集成在一起。它结合了分布式空间应用程序(SAPP)和分离的应用程序(DAPP),以确保在高度动态的轨道环境中的稳健性能。核心功能是动态链接接口映射,它允许使用卫星上的所有物理链接适应特定的应用程序要求并更改链接条件。仿真结果通过分析不同NTN链接类型的LAS限制来评估其可行性,表明群集内协调在可行的信号延迟范围内运行,而将非实时时间任务降低到地面基础架构对地面基础设施的降低可以增强对第六代(6G)网络的可扩展性。
物理系统的热平衡性质可以用吉布斯态来描述。因此,了解何时可以轻松描述此类状态非常重要。特别是,如果远距离区域之间的相关性很小,情况就是如此。在这项工作中,我们考虑在任何温度下具有局部、有限范围、平移不变相互作用的一维量子自旋系统。在这种情况下,我们表明吉布斯态满足相关性的均匀指数衰减,而且,两个区域之间的互信息随其距离呈指数衰减,与温度无关。为了证明后者,我们表明,对于在任何温度下具有局部、有限范围相互作用的一维量子自旋系统,无限链热态相关性的指数衰减、指数均匀聚类和互信息的指数衰减都是等价的。特别是,Araki 的开创性结果表明这三个条件在平移不变的情况下成立。我们使用的方法基于 Belavkin-Staszewski 相对熵和 Araki 开发的技术。此外,我们发现,我们所考虑的系统的吉布斯状态超指数地接近饱和 Belavkin-Staszewski 相对熵的数据处理不等式。
摘要:植物健康对于粮食安全是必需的,这是安全且能够维持粮食生产系统的关键决定因素。土壤养分的缺乏和植物病原体或昆虫的入侵是世界粮食生产的主要破坏者。合成肥料和化学杀虫剂经常被用来解决问题。但是,这些对微生物生态系统和生态系统功能产生负面影响。根际微生物已经证明了它们改善或管理植物营养以促进植物生长的效力,从而通过将根际区域周围的有机和无机物质转化为可用的植物营养素,从而提高产量和质量。除了调节养分的可用性和植物生长增强外,根瘤菌或真菌还可以通过分泌抑制性化学物质并增强植物免疫来限制植物病原体,以抗击害虫或病原体。因此,根际微生物被视为可行的,诱人的可持续农业的经济方法,作为生物肥料和生物农药。本综述概述了根际微生物在土壤养分中的作用和诱导植物防御的作用。此外,对采用这些微生物的最新后果以及一种可持续的战略进行了讨论,以提高施肥有效性,并鼓励更强,更耐心的植物。
摘要。本文介绍了微生物制剂对根际生物学活性的影响和冬季小黑麦的生产力。根据使用微生物制剂,米佐蛋白,rzhf品牌的根瘤菌和FZHF品牌的微生物制剂的背景,研究了冬季小麦根际生物学活性的微生物和生化指标。数据揭示了有关使用农业的氮微生物和放线菌的数量的增加,关于微米菌的生长,放线菌的生长,用米佐蛋白治疗时,用氨基化的微型机器人来处理rhiiz的数量时,将rhiiz的数量与rhizh进行了rhizh时,将纤维素降解的微生物进行了处理。提供了有关微生物制剂对冬季小卵石酶酶库的有益作用的数据。当使用药物根瘤菌品牌RZHF,转化酶和过酶时,当用药物根瘤菌品牌FZHF,多酚氧化酶和过氧化物酶处理时,注意到磷酸酶和过氧化物酶的高活性。结论是关于尿素酶活性的减少以及实验所有变体的生产力元素指标的增加。
由于人为气候变化,干旱的频率和严重程度正在增加,并且已经限制了世界许多地区的农作物系统生产力。在植物微生物组中,很少有微生物基团有可能有助于其在包括水的非生物压力事件下其宿主的锻炼和生产力。但是,考虑到多个共存的生物群体,微生物群落是复杂而综合的工作,以更好地了解整个微生物组如何对环境压力的反应。我们假设水应力将在玉米和甜菜的橄榄球中降低细菌,真菌和protistan微生物组组成以及王国间微生物相互作用的影响。,我们使用扩增子测序来对玉米和甜菜根刺激群中的细菌,真菌和protistan群落进行生长,并在炎症下生长并定义水。水定义
有价值的外部审查,美国商务部),安娜·马佐洛尼(Anna Mazzoleni)(澳大利亚DCCEEW),马库斯·贝克(Markus Beck)(美国能源部),塔米克沙·辛格(Tamiksha Singh)(国际太阳能联盟),迈克尔·帕尔(Michael Alliance),超低碳阳离子联盟,阿比尔·阿里·艾尔·索尔(Abeer Ali khan)(khan solar),kelly rus regelet(QCELL) (Solar管理计划),Daniela Blazejova(欧洲太阳能),Raffaele Rossi(欧洲太阳能),Jan Clyncke(PV Cycle),John Heckman(Jr Heckman LLC)(Jr Heckman LLC),Mehmet Ender(RCT Solutions) Vanshika Gazmer(印度国家太阳能联合会),Huiming Zhang(中国电力研究所),Bin Zheng(中国电力研究所),Hongtao Li(中国电力研究所),小北电力研究所(中国电力研究所),Chao Zhao Zhao(中国电力研究所)(中国电力研究所)(中国电力研究所)。
纳米过滤(NF)提供了一种可扩展且节能的方法,用于从盐湖中提取锂。然而,由于其水合离子半径的紧密相似性,锂与镁的选择性分离,尤其是在镁浓度高的盐水中,仍然是一个重大挑战。有限的LI + / mg 2 +当前NF膜的选择性主要归因于对孔径和表面电荷的控制不足。在这项研究中,我们报告了结合功能化的磺化carge胶以调节界面聚合过程的层间薄膜复合材料(ITFC)膜的发展。该集成的层间在控制胺基单体的扩散和空间分布中起着至关重要的作用,从而导致形成致密的纳米条纹聚酰胺网络。与常规的TFC膜相比,这些结构改进,包括精致的孔径和减少负电荷可显着提高LI + /Mg 2 +选择性(133.5)和渗透率增加2.5倍。此外,纳米条纹结构优化了膜过滤区域,同时最大程度地降低了离子传输抗性,从而有效克服了离子选择性和渗透性之间的传统权衡。这项研究强调了ITFC膜在达到高锂纯度和恢复的潜力,为大规模从盐水中提取大规模锂的途径有前途的途径。
根际微生物是植物促生和生物防治的重要生物体。为全面系统地了解根际微生物研究热点和前沿动态,从Web of Science中收集了6056篇有关根际微生物的文献,采用CiteSpace 6.1.3和R 5.3.1进行文献计量分析。结果显示,近几十年来该领域的总参考文献量呈上升趋势。中国、印度和巴基斯坦是发文量最多的三个国家,德国、美国和西班牙是与其他国家合作发表论文最多的国家。该领域的核心研究内容是生物防治、细菌群落、ACC脱氨酶、植物修复、诱导系统抗性和植物促生。种子生长、芽孢杆菌、植物生长及生物防治是目前及未来相当长一段时间内根际微生物研究领域的热点。上述研究成果从引文角度定量、客观、科学地描述了2012年至2021年根际微生物研究现状及研究热点,以期推动该领域的深入研究,并为相关领域学者提炼研究动态及科学问题提供参考信息。
也称为生物水,结合水,活化的水,通电水,相干水域,有活力的水或六边形水[2]。当非结构化的液态水暴露于化学和/或电磁能源(例如臭氧或过氧化氢与紫外线或磁场)的组合时,水分子的一部分将分解为羟基自由基。基于羟基发电机技术的水处理系统,这是波长为185 nm或较短的紫外灯的组合。除了磁场的强度之外,水的矿物质及其温度影响结构与散装水的比率[3]。许多农业应用受益于结构化水,因为它没有能量毒素。除了增加能量外,它还调节和平衡土壤矿物质,并带来高氧合状态。结构化的水帮助草莓,橘子,芽菜,柠檬和葡萄生长得更快,更健康,早就成熟,产生更多美味的食物,并使其更加新鲜更长(保质期)[4]。一般而言,结构化水会带来以下好处:果实,谷物,蔬菜生产的100%增加;用水量减少60%;化学使用量的100%降低;更好的害虫,霉菌,藻类控制;健康的农作物,鸟类,牛;抵抗极端温度;改善土壤条件;提高风味,质地和保质期。在结构化水方面,华盛顿大学的杰拉尔德·波拉克(Gerald Pollack)教授是一个先驱,因为他定义了第四阶段的水,也称为结构化水。对结构化水的抗氧化特性及其对动物细胞生物活性的影响的研究表明,它有助于正常细胞,同时抑制恶性细胞,这对动物和人类都有好处[5]。可以使用核磁共振光谱(NMR)观察到六边形结构,这是研究期刊上几个科学出版物的主题。植物的产量较高,导致细胞壁的水合增加。因此,结构化水高度适用于农业[6]。由于其高密度与普通水相比,悬浮的微球被排除在悬浮水之外,导致了排除区,该区域已被称为此类。此外,已经观察到,-200 mV的电势在排除区域之外并超出其边界(负排除区)[7]。
这项研究的重点是从巴格达市的根际土壤中分离出的鲍曼尼杆菌产生和纯化的铁载体,并与所选抗生素进行独立和结合评估其生物活性。使用Chrom琼脂,生化和生理测试进行细菌鉴定,并通过PCR扩增16S rDNA管家基因确认。在培养琥珀酸酯肉汤中的细菌后,使用乙酸乙酯提取铁载体,并通过HPLC纯化,在403 nm的波长下检测到。从下呼吸道感染中获得了总共38种细菌分离株,包括大肠杆菌,肺炎克雷伯氏菌,铜绿假单胞菌,铜绿杆菌,baumanniii,金黄色葡萄球菌,金黄色葡萄球菌和塞拉蒂亚和srratia marcesencens。用13种抗生素进行的抗生素敏感性测试显示,氨苄西林(65.7%)和头孢曲松(63.1%)的抗性率最高,而使用amikacin(15.7%)观察到最低的耐药性。对铁载体的协同活性与头孢曲松,头孢嗪和庆大霉素相结合,以针对多剂量抗性(MDR)分离株进行了测试。通过铁载体和庆大霉素与金黄色葡萄球菌的结合观察到了最显着的抗菌活性,而对鲍曼尼曲霉的效果最小。总之,从下呼吸道感染中成功鉴定出38种细菌分离株。铁酚与庆大霉素的结合表现出对金黄色葡萄球菌的显着抗菌活性,但对鲍曼尼曲霉的作用无效。
