我们引入了一个新的量子 R'enyi 散度 D # α,其中 α ∈ (1 , ∞ ) 以凸优化程序定义。此散度具有多种理想的计算和操作特性,例如状态和通道的高效半正定规划表示,以及链式法则特性。这种新散度的一个重要特性是它的正则化等于夹层(也称为最小)量子 R'enyi 散度。这使我们能够证明几个结果。首先,我们使用它来获得当 α > 1 时量子通道之间正则化夹层 α -R'enyi 散度的上界的收敛层次。其次,它使我们能够证明当 α > 1 时夹层 α -R'enyi 散度的链式法则特性,我们用它来表征通道鉴别的强逆指数。最后,它使我们能够获得量子通道容量的改进界限。
备注: 1. 本校在学学生违反学术伦理应依「国立中山大学在学学生学术伦理规范暨违反学术伦理案件处理要点」及「国立中山大学硕、博士学位論文抄袭、代写、舞弊处理原则」 办理。
1. 吉林华微电子有限公司的产品销售方式为直销或代理销售,客户订货时请与我公司核实。 2. 我们强烈建议客户在购买我公司产品时仔细查看商标,如有任何问题,请随时与我们联系。 3. 电路设计时请不要超过器件的绝对最大额定值。 4. 吉林华微电子有限公司保留对本规格书进行更改的权利,如有更改,恕不另行通知。
贡献。在本文中,我们系统地研究了近似凸函数优化的量子算法,并将其应用于零阶随机凸老虎机。量子计算是一项快速发展的技术,量子计算机的能力正在急剧提升,最近谷歌 [ 6 ] 和中国科学技术大学 [ 42 ] 已经达到了“量子至上”。在优化理论中,半定规划 [ 3 , 4 , 11 , 12 ]、一般凸优化 [ 5 , 15 ]、优化中的脱离鞍点问题 [ 41 ] 等问题的量子优势已被证明。然而,据我们所知,近似凸优化和随机凸优化的量子算法是广泛开放的。在本文中,我们使用量子零阶评估预言机 OF 来考虑这些问题,这是先前量子计算文献中使用的标准模型 [ 5 , 14 , 15 , 41 ]:
在随机环境中涉及顺序决策的优化问题。在这本专着中,我们主要集中于SP和SOC建模方法。在这些框架中,存在自然情况,当被考虑的问题是凸。顺序优化的经典方法基于动态编程。它具有所谓的“维度诅咒”的问题,因为它的计算复杂性相对于状态变量的维度呈指数增长。解决凸多阶段随机问题的最新进展是基于切割动态编程方程的成本为go(值)函数的平面近似。在动态设置中切割平面类型算法是该专着的主要主题之一。我们还讨论了应用于多阶段随机优化问题的随机临界类型方法。从计算复杂性的角度来看,这两种方法似乎相互融合。切割平面类型方法可以处理大量阶段的多阶段问题
量子计算的一个基本模型是可编程量子门阵列。这是一种量子处理器,由程序状态提供信息,该程序状态会在输入状态上引发相应的量子操作。虽然可编程,但已知该模型的任何有限维设计都是非通用的,这意味着处理器无法完美模拟输入上的任意量子通道。表征模拟的接近程度并找到最佳程序状态在过去 20 年里一直是悬而未决的问题。在这里,我们通过展示寻找最佳程序状态是一个凸优化问题来回答这些问题,该问题可以通过机器学习中常用的半有限规划和基于梯度的方法来解决。我们将这个一般结果应用于不同类型的处理器,从基于量子隐形传态的浅层设计到依赖于基于端口的隐形传态和参数量子电路的更深层方案。
的增加而降低 , 当冷却水流量增至恰好实现热量匹配流量的 1.5、2.7、3.8 倍时 ,COP 分别下降 39.0%、60.1%、69.2%。
直接依赖 ESG 报告的另一种方法是使用商业数据提供商。各种公司都提供可持续性风险数据集,通常依赖于从 ESG 报告中手动提取的信息,并根据专有算法补充估算数据。目前,商业数据为全球金融市场参与者进行的可持续性风险分析提供了动力,但肯定还有改进的空间。数据可靠性仍然是一个问题,因为供应商之间的差异可能很大。尽管数据通常在源头上是公开的,但许可限制限制了数据的可访问性。此外,专有算法使得监管者和监管机构难以根据专有数据做出可重复和可解释的决策。