被困的离子提供了具有非常长的连贯时间的量子,可以用高填充性初始化,操纵,纠缠和读出[25-30]。更重要的是,被困的离子很容易与光场相互作用,在其电子状态(固定量子存储器 - 固定量子内存)和光子 - “浮动”量子信息载体之间提供了自然接口[31]。包含一个sin- gle物种的一个量子的被困的离子网状节点已通过光子链接连接,用于执行铃铛测试[7],状态传送[18] [18],随机数生成[19],量子密钥分布[21]和频率比较[22]。捕获的离子系统也证明了最新的单一和双Quibent Gate有限量,但是将它们集成到量子网络节点中仍然是一个挑战,因为适合量定通信的离子物种不一定还可以提供具有与网络活动的良好隔离的良好的存储量值。原子种(例如133 ba +或171 yb +)已被提议绕过这一问题[26,32],但是,所需的实验技术的发展仍在进行中。neverthe,每个角色都有可能被不同的物种填补[33]。此外,使用多种原子物种具有最小化串扰的优势,可以在中路测量和冷却[34]中最小化串扰[34]。
全基因组关联研究(GWAS)已鉴定出113个影响发生连性脊椎炎(AS)风险的单核苷酸多态性(SNP),并且正在进行的GWAS研究可能会识别100 +新的风险基因座。由于以下挑战,将遗传发现向新型疾病生物学和治疗的翻译很难:(1)在确定与疾病相关SNP调控的因果基因时的困难,(2)(2)在确定相关细胞型的caus型基因的差异方面的困难(2)确定其功能(3),(3)(3)询问因果基因在疾病生物学中的功能作用。本评论将讨论最近的进展和未解决的问题,重点是这些挑战。此外,我们将回顾生物学的研究以及与IL-23/IL-17途径相关的药物的开发,该途径是由AS遗传学部分驱动的,并讨论从这些研究中可以从未来的AS-CYPAID基因的功能和翻译研究中学到的知识。