Loading...
机构名称:
¥ 1.0

我们以前的研究引入了一种改进的伏诺图方法,以提高州级在状态疫苗分布的效率。与广泛使用的柱生成技术相比,尽管运输费用更高,但该方法的运输成本降低了5.92%,需求覆盖率增加了28.15%。两种方法都有效地解决了分布问题,但由于决策变量的复杂性和数据的大规模性质,它们经历了大量的CPU时间。我们的论文着重于提高计算效率,同时保持解决方案的质量。文献提出了各种方法来提高基于Voronoi图的技术的效率。例如,Lipin(2014)引入了凸船体方法,而Chen&Merkel(2006)利用这种技术在随机测试中减少了选择开销。此外,Li&Liu(2020),Ohya等。(1984),秦等人。(2017)和Karavelas(2004)各自提出了降低计算冗余并提高效率的策略。但是,由于奖励功能和子区域重塑策略的差异,这些方法并不直接适用于我们修改的Voronoi图。为了解决这个问题,我们建议开发一种新算法,该算法将机器学习纳入增强的列生成(CG)方法,以改善运行时。

机器学习增强的列生成...

机器学习增强的列生成...PDF文件第1页

机器学习增强的列生成...PDF文件第2页

机器学习增强的列生成...PDF文件第3页

机器学习增强的列生成...PDF文件第4页

相关文件推荐