本文首先对开关配置中的 MOS 器件进行了深入研究。然后分析了改进的开关架构,以便更好地将它们集成到复杂的应用中 [4-8]。强调了使用串行接口进行数字控制的模拟开关的优势。具体来说,我们专注于由数字控制块启用或禁用的多通道开关的设计。展示了为实现而设计的内部结构、主要电气参数和布局。这些架构的验证是通过数字和晶体管级模拟、静态时间分析和噪声研究完成的。我们将在一个 8 通道系统上介绍当前的结果,该系统的工作频率从 2.5 MHz [6] 增加到 55 MHz 时钟信号,与逻辑电平的偏差很小 [7]。
玻璃碳(GC)是一种独特的碳,具有广泛的有用特性,包括高热稳定性,低热膨胀和出色的电导率。这使其成为热塑性复合材料中加强的有前途的候选人。在这项工作中,使用微米GC粉(µGC)和亚皮平GC粉末(SµGC)制造高密度聚乙烯(HDPE)基础复合材料。通过两种不同的方法将GC钢筋引入聚合物基质中,以形成随机和隔离的增强分布。检查了GC体积含量(φ)和复合结构对电导率的影响。证明,虽然玻璃碳可以比石墨更有效地增强HDPE的电导率,但它与碳Na- Notubes的出色性能相匹配,碳Na- Notubes的性能弥补了它们之间的间隙。研究表明,GC的添加增加了HDPE的电导率,并且在φ≈4%时可以实现渗透阈值(φC)。GC的隔离分布导致渗透阈值的值(φC≈1%)低于随机分布。
经出席会议并拥有以下表决权的股东全部表决通过,公司任命安永会计师事务所有限公司注册会计师注册号 4377 的 Sarinda Hirunprasurtwutti 女士(注册会计师注册号 4799)和/或 Wichart Lokatekrawee 先生(注册会计师注册号 4451)为恒诺微电子股份有限公司 2024 年度审计师,总薪酬不超过 2,450,000 泰铢。
摘要 — 本文介绍了一种用于网络连接微控制器边缘设备的 IEEE 1588 精确时间协议 (PTP) 的裸机实现,可在汽车网络和多媒体应用中实现亚微秒级时间同步。该实现利用微控制器 (MCU) 的硬件时间戳功能来实现两级锁相环 (PLL),以校正硬件时钟的偏移和漂移。使用 MCU 平台作为 PTP 主机,可通过网络分发亚微秒级精确的全球定位系统 (GPS) 计时信号。使用主从配置评估系统性能,其中平台与 GPS、嵌入式平台和微控制器主机同步。结果表明,MCU 平台可以通过网络与外部 GPS 参考同步,标准偏差为 40.7 纳秒,从而为各种应用中的裸机微控制器系统实现精确的时间同步。索引术语 —PTP、精确时间协议、微控制器、嵌入式系统、TSN、时间敏感网络
摘要:氮化铝 (AlN) 是少数具有优异导热性的电绝缘材料之一,但高质量薄膜通常需要极高的沉积温度 (>1000°C)。对于密集或高功率集成电路中的热管理应用,重要的是在低温 (<500°C) 下沉积散热器,而不会影响底层电子设备。在这里,我们展示了通过低温 (<100°C) 溅射获得的 100 nm 至 1.7 μ m 厚的 AlN 薄膜,将其热性能与其晶粒尺寸和界面质量相关联,我们通过 X 射线衍射、透射 X 射线显微镜以及拉曼和俄歇光谱对其进行了分析。通过反应性 N 2 的分压控制沉积条件,我们实现了 ∼ 600 nm 薄膜热导率 ( ∼ 36 − 104 W m − 1 K − 1 ) 的 ∼ 3 × 变化,上限范围代表室温下此类薄膜厚度的最高值之一,尤其是在低于 100°C 的沉积温度下。还可以从热导率测量中估算出缺陷密度,从而深入了解 AlN 的热工程,可针对特定应用的散热或热限制进行优化。关键词:热导率、氮化铝、生产线后端、热传输、溅射沉积、低温、电力电子
金属电极诱导的晶格应变会损害用电子或孔自旋运行的高级量子设备的功能。在这里,我们通过nanobeam扫描X射线di效果显微镜很好地研究了由埋入10 nm厚的SI / SI 0.66 GE 0.34量子孔的晶状体上的CMOS制造钛电极引起的变形。我们能够测量2-8×10-4范围内的锡电极诱导的应变张量成分的局部调制,并具有约60 nm的横向分辨率。我们评估这些应变流动在局部调制中反映在SI传导带的最小值大于2 MeV的电势中,该电池的最小值大于2 MeV,该调制带接近静电量子点的轨道能。我们观察到,在量子孔层的给定深度处应变调制的符号取决于电极的横向尺寸。由于我们的工作探讨了设备几何形状对应变诱导的能量景观的影响,因此它可以进一步优化缩放CMOS加工的量子设备的设计。
近来,人们对开发工作在短波红外 (SWIR) 波长 [1] 的单光子探测器的兴趣日益浓厚,SWIR 波长定义为工作在约 1000 nm 的 Si 能带边缘之外的波长。光检测和测距 (LIDAR) [2]、透过遮蔽物成像 [3] 和量子通信 [1] 等众多量子技术应用都需要在这些波长下具有这样的单光子灵敏度。例如,由于太阳背景辐射较低且激光安全人眼阈值较高,可通过转移到 SWIR 来改进 LIDAR 应用。在量子通信中,1310 nm 和 1550 nm 的低损耗光纤波长要求任何单光子探测器都能在这些波长下进行探测。虽然超导纳米线探测器 [4] 和 InGaAS/InP SPAD [5] 是现成的单光子探测技术,但 Ge-on-Si SPAD 具有降低后脉冲和提高单光子探测效率的潜力。 [6] 本研究在 260 nm 绝缘体上硅 (SOI) 晶片上制造了 Ge-on-Si SPAD,采用独立吸收、电荷和倍增层几何结构 (SACM) 和横向 Si 倍增层,采用完全兼容 CMOS 的工艺。利用这种几何结构,可以轻松实现与 Si 波导和光纤的集成 [7],从而实现其在量子通信应用中的潜力。Ge 选择性地生长在 SiO 2 沟槽内,与块状 Ge 生长相比,降低了穿线位错密度 (TDD)。研究了这些器件的暗电流特性,以及不同的 Ge 钝化技术对侧壁的影响。
电力供应为国家发展提供了巨大好处,因为它为国家提供了可靠、高效的能源。发展中国家(主要是撒哈拉以南非洲)偏远农村地区的大多数人口没有电力供应。尽管政府通过电力公司努力将电网配电网络扩展到偏远农村地区,但由于对安全可靠电力的需求不断增长,覆盖范围仍然不够。然而,太阳能仍然是坦桑尼亚等许多国家利用率最低的能源。太阳能光伏 (PV) 系统微电网在许多国家(主要是撒哈拉以南非洲)的农村电气化项目中显示出其潜力。太阳能光伏系统微电网是一种光伏电站,其本地配电网络为一个村庄或一组村庄提供交流电 (AC)。基本上,它由一定容量的太阳能光伏模块、充电器控制器、将直流电转换为交流电的逆变器、电池组外壳和电站控制系统组成。在没有电网连接或以柴油发电为主要电源的地区,光伏电站能够高效且相对廉价地发电。本文旨在从技术设计和经济分析的角度概述坦桑尼亚太阳能光伏微电网的应用,所选微电网系统位于姆万扎地区森盖雷马区朱马岛村。朱马岛定居点的电力需求估计约为每天 25 千瓦时。在该国现行的电价条件下,如果采用上网电价方案或其他激励措施(如补助金/资本补贴),则可认为该项目在财务上可行。然而,从长远来看,减少温室气体排放等其他非财务利益可以帮助减轻困扰整个地球的气候变化问题的不利影响。
摘要我们引入了独特的软标志操作,该操作利用了邮票屋顶塌陷引起的间隙,以选择性地去除AU上的烷烃 - 硫醇自组装单层(SAM),以生成表面图案,这些表面图案比原始弹性邮票上的结构小。使用化学升降光刻(CLL)过程中的千分尺尺度结构邮票实现的最小特征维度为5 nm。分子图案保留在邮票特征及其周围或铭文圆之间的差距中,遵循数学预测,可以通过更改邮票结构尺寸(包括高度,音高和形状)来调整它们的尺寸。这些生成的表面分子模式可以用作生物识别阵列,也可以将其转移到下方的Au层以进行金属结构创造。通过将CLL过程与此差距现象相结合,以前被认为是使用的柔软的属性属性,可用于在简单的草图中实现低于10 nm的特征。
1 中国科学院神经科学研究所、神经科学国家重点实验室、脑科学与智能技术卓越创新中心,上海;2 中国科学院大学,北京;3 复旦大学类脑智能科学与技术研究所,上海;4 北京大学心理与认知科学学院、行为与心理健康北京市重点实验室、IDG/麦戈文脑研究中心、北大-清华生命科学中心,北京;5 浙江工业大学信息工程学院,杭州;6 深圳市神经精神调控重点实验室和脑科学协同创新中心、广东省脑连接组与行为重点实验室、中国科学院脑连接组与操控重点实验室、脑认知与脑疾病研究所、深圳先进技术研究院、深港脑科学研究院-深圳基础研究机构,深圳