尽管癌症已知数十年来一直以铁的胃口闻名,但直到最近才出现了化学作用来利用这种改变的状态治疗方法,它通过靶向癌细胞的胞质胞质不稳定铁池(LIP)。艺术的状态包括与唇部反应的疗法,以产生细胞毒性自由基物种(在某些情况下还释放了药物有效载荷)和表达唇酸盐诱导的氧化应激以触发铁t的分子。有效地在患者中实施唇靶疗法将要求生物标记识别唇部升高的肿瘤,因此最有可能屈服于脂肪靶向的干预措施。朝向这个目标,我们测试了肿瘤吸收新型的唇敏性射头18 F-TRX是否对肿瘤敏感性对脂肪靶向疗法的敏感性排列。方法:在10个亚脑和原位人异种移植模型中,在体内评估了18 F-Trx摄取。神经胶质瘤和肾细胞癌,因为这些肿瘤具有最高的STEAP3的相关表达水平,STEAP3是在广泛的研究所癌细胞系百科全书中,可将铁铁降低为亚铁氧化状态的氧化还原酶。在带有U251或PC3异种移植物的小鼠中,比较了释放DNA烷基CBI的唇部激活药物TRX-CBI的抗肿瘤作用,分别为u251或PC3异种移植物,分别为18 F-TRX摄取。结果:18 F-TRX显示出广泛的肿瘤积累。一项抗肿瘤评估研究表明,TRX-CBI有效抑制了U251异种移植物的生长,最高的18 f-Trx摄取模型。此外,对U251的抗肿瘤作用比PC3肿瘤观察到的抗肿瘤作用显着,与治疗前肿瘤中的相对18 F-TRX - 确定的唇彩一致。最后,一项类似的研究表明,成年雄性和雌性小鼠的估计有效人剂量与其他18种F基成像探针的有效剂量相当。结论:据我们所知,我们报告了第一个证据表明,可以通过分子成像工具预测肿瘤对靶向靶向疗法的敏感性。更普遍地,这些数据通过表明成像对原位进行成像的要求来为核疗法模型带来新的维度,从而在原位量化了亚稳态生物分析物在预测肿瘤药物敏感性方面的浓度。
尽管几十年来人们已经知道癌症对铁有着无尽的渴望,但直到最近才出现了一种化学方法,利用这种改变的状态进行治疗,即针对癌细胞中扩大的细胞浆不稳定铁池 (LIP)。最先进的治疗方法包括与 LIP 反应产生细胞毒性自由基物质(在某些情况下还会释放药物有效载荷)和加剧 LIP 诱导的氧化应激以引发铁死亡的分子。在患者中有效地实施 LIP 靶向疗法需要生物标记来识别那些 LIP 升高最高、因此最有可能死于 LIP 靶向干预的肿瘤。为了实现这一目标,我们测试了肿瘤对新型 LIP 感应放射性示踪剂 18 F-TRX 的摄取是否与肿瘤对 LIP 靶向疗法的敏感性一致。方法:在 10 个皮下和原位人类异种移植模型中体内评估了 18 F-TRX 的摄取。优先考虑神经胶质瘤和肾细胞癌,因为这些肿瘤在 Broad Institute 癌细胞系百科全书中具有最高的 STEAP3(一种将三价铁还原为亚铁氧化状态的氧化还原酶)相对表达水平。在携带 U251 或 PC3 异种移植瘤的小鼠中比较了 LIP 激活的前药 TRX-CBI(可释放 DNA 烷化剂 CBI)的抗肿瘤作用,这两种肿瘤分别具有高和中等水平的 18 F-TRX 摄取。结果:18 F-TRX 显示出广泛的肿瘤蓄积范围。抗肿瘤评估研究表明,TRX-CBI 强烈抑制了 U251 异种移植瘤(具有最高 18 F-TRX 摄取量的模型)的生长。此外,抗 U251 肿瘤作用显著高于 PC3 肿瘤作用,这与治疗前肿瘤中 18 F-TRX 确定的 LIP 相对水平一致。最后,剂量测定研究表明,成年雄性和雌性小鼠的估计有效人体剂量与其他 18 F 基成像探针相当。结论:据我们所知,我们报告了第一个证据,即可以使用分子成像工具预测肿瘤对 LIP 靶向治疗的敏感性。更一般地说,这些数据为核治疗诊断模型带来了新的维度,表明需要成像来原位量化亚稳态生物分析物的浓度以预测肿瘤药物敏感性。
解决蛋白质折叠问题。这些方法在自然语言处理字段中使用变压器模型来解释以多个序列比对(MSA)(MSA)的共同进化性化来映射到其晶体样结构的主要序列。替代模型,例如omegafold [8]和Esmfold [9],使用蛋白质语言模型(PLM)来绕过MSA的要求。最近,Alphafold3(AF3)[10]将其预测能力扩展到包括蛋白质,核酸,小分子,离子等的复杂结构。尽管这些方法存在于“序列结构 - 功能”范式中,但已经开发了基于这些方法的广泛方法,可以通过修改AF2的输入或先验信息来从“序列 - 元件功能”的角度运行。它们包括MSA-子采样[11]或还原MMSA-AF2(RMSA-AF2),通过从MSA中随机采样序列来减少输入AF2的信息,这些序列会根据序列相似性[12],Speach_AF [13]与MSA的usa use clustions clusters clusters clusters clusterions clustimation cluse speach_af [13] pertrultiants the MSA,并且更多地基于MSA,并且更多的是群集群体,并且会群众群体群体群体群体/更多。方法[14]。此外,通过利用AF2结构,Diffold [15]方法使用扩散框架来采样异质构象。我们指出了Sala等人的评论文章。[16]有关这些方法和其他方法的详细信息。然而,大多数生物分子功能取决于适用于给定环境变量(例如温度,压力和离子浓度)的精确构象分布。因此,不仅需要获得任何分布,而且需要获得玻璃体加权分配的构象的分配,以准确地构象对环境条件。这是通过多种方式完成的,包括通过直接开发基于AI的采样器或使用AI来增强增强的MD。这确保系统探讨了按照热力学原理在给定温度和压力下在给定温度和压力下的正确相对概率和波动的构象。这些玻尔兹曼的重量为变构网络作品和下游生物分子功能提供了见解[17],还减少了通过对接和其他应用程序发现药物发现的亚稳态构象的搜索空间[18](图1C)。在这次微型审查中,我们将讨论在过去几年中为生物分子构象分布的传统甲基动物的影响,并进一步概述了我们认为社区可以采取的鲍尔茨曼(Boltzmann)加权蛋白质及其复合物的结构合成的关键步骤。
Glasgow, G1 1XL, UK Corresponding authors, e-mail: * arnaoutakis@hmu.gr , # bryce.richards@kit.edu Abstract Upconversion – the absorption of two or more photons resulting in radiative emission at a higher energy than the excitation – has the potential to enhance the efficiency of solar energy harvesting technologies, most notably photovoltaics.但是,所需的超高光强度和灯笼离子的狭窄吸收带限制了有效的太阳能利用率。在本文中,我们报告了令人兴奋的上转换器,其浓度的阳光在通量密度高达2300个太阳下,辐射仅限于硅带隙以下的光子能量(对应于波长= 1200 nm)。上转换到= 980 nm是通过在荧光聚合物基质中使用六角形的Erbium掺杂钠yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium。上转换具有与辐照度的非线性关系,因此在高辐照度下,在过程变为线性的情况下发生阈值。对于β -Nayf 4:25%ER 3+,我们在320个太阳下浓缩的阳光下发现了两个光子阈值。值得注意的是,该阈值低于相应的激光激发,并且可能与所有共同激发的ER 3+离子水平和激发的吸收有关。这些结果突出了一条利用光伏的太阳光谱的途径。简介上转换(UC)是一个非线性光子过程,可以添加来自两个或多个较低能量光子的能量,从而导致单个较高能量光子的发射[1]。第一个激发态通过基态吸收(GSA)填充。uc已在激光器[2],生物医学成像[3],[4],抗爆炸[5],[6],塑料回收[7]和太阳能收获[8],[9],[9],[10]中进行了研究。对于光伏,这可能是绕过太阳能光谱中与子频带光子相关的太阳能电池传输损失的一种有前途的方法[11]。计算表明,在理想情况下,UC可以提高单连接太阳能电池的理论上效率(Shockley-Queisser)极限从33%到48%[11]。有效的稀有地球[12],[13],[14]上转换器的外部转换器高达9.5%,外部UC量子产量(EUCQY),这是外部发射与入射光子的比率。稀有的稀土上转换器具有较高的近红外(NIR)Eucqy的表现最高的硅[14],[15]和钙钛矿太阳能电池[16]。在三价灯笼离子中,UC通过部分填充的4F壳中的辐射过渡发生。额外光子的激发态吸收(ESA)可以产生更高的激发态。然而,可以通过第一个激发态以第一个激发态的能量传递向上转换(ETU)来进行更有效的过程,尤其是在较低的激发能力密度下,如图1(a)。一个离子的能量被捐赠给附近的离子,将其推广到更高的亚稳态状态,而敏化剂的能量又回到基态。
摘要:振动光谱是一种无处不在的光谱技术,可表征功能性纳米结构材料,例如沸石,金属 - 有机框架(MOF)和金属 - 卤化物 - 卤化物perov-Skyites(MHP)。所得的实验光谱通常很复杂,具有低频框架模式和高频功能组振动。因此,理论上计算的光谱通常是阐明振动指纹的重要元素。原则上,有两种可能的方法来计算振动光谱:(i)一种静态方法,将势能表面(PES)近似为一组独立的谐波振荡器,以及(ii)一种动态方法,通过整合牛顿运动的方程来将PES围绕PES明确采样。动态方法考虑了Anharmonic和温度效应,并在真正的工作条件下提供了更真实的材料的代表;但是,此类模拟的计算成本大大增加。在量子机械水平上执行力和能量评估时,这肯定是正确的。分子动力学(MD)技术在计算化学领域已变得更加建立。然而,为了预测纳米结构材料的红外(IR)和拉曼光谱,其用法的探索程度较低,并且仅限于一些孤立的成功。因此,目前尚不清楚哪种方法应使用哪种方法来准确预测给定系统的振动光谱。■简介迄今为止缺乏一系列广泛的纳米结构材料的各种理论方法与实验光谱之间的全面比较研究。为了填补这一空白,我们在本文中提出了一个简洁的概述,该方法适用于准确预测各种纳米结构材料的振动光谱,并为此目的制定一系列理论指南。为此,考虑了四个不同的案例研究,每个案例研究都治疗了特定的物质方面,即柔性MOF的呼吸,刚性MOF UIO-66中缺陷的表征,金属 - 卤化物 - 卤化物perovskite CSPBBR 3中的Anharmonic振动以及对访客的吸附以及对Zeolite H-Ssz-ssz-13的孔的吸附。对于所有四种材料,在其宾客和无缺陷状态以及在足够低温下的所有四种材料中,静态和动态方法在定性上与实验结果一致。当温度升高时,由于存在Anharmonic语音子模式,CSPBBR 3的谐波近似开始失败。此外,缺陷和来宾物种的光谱指纹通过简单的谐波模型很好地预测。两种现象都弄平了势能表面(PES),这促进了亚稳态状态之间的过渡,因此需要动态采样。(ii)当材料在较高的温度下评估或额外的复杂性进入系统时,例如,强烈的非谐度,缺陷或客人物种,谐波制度分解,并且需要动态抽样才能正确预测声子频谱。在本综述中处理的四个案例研究的基础上,我们可以提出以下理论指南,以模拟功能固态材料的准确振动光谱:(i)对于低温下的纳米结构的晶体框架材料,可以使用静态方法在低温下的洞察力,可以使用几个点依靠point of the points of points of point of point of points of point of points points points and points and points and points and points and pote。这些准则及其针对原型材料类别的插图可以帮助实验和理论研究人员增强从晶格动力学研究中获得的知识。
概述 光学时钟和频率标准是当今最精确的测量设备。但是,需要进一步改进以扩展其在基础计量学中的应用。该项目研究了激光冷却的捕获离子,作为下一代最高精度光学时钟的参考。虽然大多数带有捕获离子的精确光学时钟都是基于单个离子,但该项目研究了多达数百个离子的库仑耦合固体状态的集合,称为库仑晶体 (CC)。这种多离子方法为稳定性更高的时钟提供了更高的信噪比,并使得研究由碰撞或相互作用引起的微小频率偏移成为可能。研究了时钟和冷却剂离子的不同组合,并为对以前无法接近的系统进行精确测量提供了机会,例如具有光学核跃迁的高电荷氩离子和钍离子。主要成果是开发和实施了一系列不同离子(包括放射性同位素 229 Th)的加载和冷却方法。已经证明了双离子、两种物种时钟操作,并且已经对协同冷却的 115 In + 和 40 Ar 13+ 进行了精确的频率测定,其中后者的结果代表了高电荷离子精确测量的突破。需求 在 SI 单位制中,时间单位的实现处于关键位置,因为单位秒通过定义常数包含在七个基本单位中的六个的定义中。光学时钟研究的进展继续快速降低不确定度,目前评估范围为 10 -19。在准确性或稳定性方面具有特定优势的新参考系统需要研究新的实验方法以及相关的原子、分子和核数据。到目前为止,尚未详细研究过激光冷却的两种库仑晶体的结构和动力学,而控制和理解这种结构和动力学对于改进光学时钟和频率标准至关重要,并且对于优化协同冷却和光谱学也必不可少。协同冷却,即一种离子物种被激光冷却,另一种离子物种通过库仑相互作用冷却,可以研究更广泛的光学时钟相关离子。现有的光学时钟陷阱加载方法已针对单电荷物种进行了优化,并基于蒸发或激光烧蚀,结合电子撞击或光电离。然而,它引入了离子之间以及与离子阱的时间相关电场之间的额外库仑相互作用,并且需要进一步研究这些相互作用引起的频率偏移。对半衰期为 7920 年的放射性 229 Th 同位素的研究需要对 Th 3+ 和更高电荷态采用有效的加载方法,以便以最小源活动操作核光钟。离子钟会受到与背景原子和分子碰撞的影响,从而产生一系列影响,从频率偏移、亚稳态能级的激发或猝灭到通过电荷交换或化学反应导致的离子损失。为了可靠地排除或估计低 10 -18 能级的系统偏移,必须系统地研究碰撞的影响。在这个原子和核物理之间的新交叉学科领域中,所需的先进实验基础设施通常无法在一个高度专业化的实验室中使用。因此,需要便携式激光光谱设备。目标
人工智能和机器人领域的负责任研究与创新 (RRI):一种关系方法,用于实现思想和机器的后人类共情 20 世纪 80 年代末开始的对人类基因组计划的伦理、法律和社会影响 (ELSI) 的研究,到 2010 年左右成为美国联邦预算的一项。ELSI 研究成为美国和欧盟政府科技机构自我反思的一部分;负责任的研究与创新 (RRI) 的道德理想已成为一种专业规范。1 这个历史性的例子是跨学科可能性的愿景,它指导了以下提议,即在思想和机器计划中系统地整合技术和道德,并作为纽约大学对这些问题的持续承诺的一部分。2 人工智能和机器人研究与人类基因组计划非常相似,并且肯定会从类似的处理中受益。RRI 提供了一种事后应对新技术影响的趋势的替代方案:它关注社会影响“上游”的设计问题和实施前的初始条件。RRI 在实施阶段的“中游”中也非常有效。在信息科学和技术的情况下,上游和下游之间的距离相对较短,中游干预的价值变得更加明显。3 对初始条件的敏感性是所有复杂自适应系统的一个特征——在任何希望整合人类和非人类系统的系统研究中都必须考虑到这一事实。中游发展阶段的亚稳态中介和过渡结构往往呼应了对初始条件的系统敏感性:它们易受干扰,因此容易受到一定程度的调节和管理。中游调节增强了道德干预的有效性 中游 RRI 在跨学科计划(如“心智与机器”)的情况下也具有强大的潜在影响。中游调节的实验室民族志研究表明,将社会科学家和人文研究人员嵌入科学和工程实验室可以增强反思方法实践和协调,从而使上述学科领域受益。4 一个非常适合当代人工智能和机器人研究跨学科性质的哲学框架是本体结构现实主义 (OSR) 5 。过程哲学与复杂自适应系统的一致性为设计和自然系统的稳健跨标量集成提供了进一步的本体论基础。以新康德哲学及其与过程形而上学的亲缘关系为基础的 OSR 具有根本的关系基础,它提供了适应性的概念能力,以应对技术的快速发展及其社会影响。科学和工程中的仿生 6 范式在这个方向上取得了有趣的进展。在伦理信息理论、神经科学、社会网络理论、生态学、系统理论和气候模型的交叉点上,生态模拟范式即将出现;这可能成为“环境人工智能”和机器人技术新方法的沃土。半个世纪前,克拉克和库布里克在《2001:太空漫游》中设想了环境人工智能,即 HAL, 7 并在斯皮尔伯格的《少数派报告》中重新构想为一个完全沉浸式的安全和商业环境。在现实生活中,IBM 和其他公司继续开发人机协作系统,这可以被视为生态模拟范式的初稿。虽然仍处于推测阶段,但由本地化和分布式机器人组成的自主自学型人工智能可以在日托环境中像婴儿一样被抚养长大。人工智能代理和人类之间精心策划的互动可以共同创造一个自组织生物的世界,其生态相互依存构成了后人类同情的有机基础。总结:基于认知责任 8 和社群伦理的自我限制是后人类同情的先决条件,这种同情可以为人类、非人类和人工智能代理之间的未来互动奠定基础。在精心策划的环境中,对负责任的创新模型进行自我学习、自我限制系统的训练,为新形式的共同生成的知识生产打开了大门,这些知识生产能够认识并响应人类和非人类价值观的处境。
• CU 博士论文工作 2018 年 8 月至今 直驱发电机比齿轮发电机具有更高的可靠性;但是,它们通常非常大(10MW 涡轮机重达 220 吨)。其中大部分质量是结构支撑材料。通过实施适合增材制造的拓扑优化和晶格结构,发电机重量可减轻多达 50%。此外,通过集成先进的冷却方法,可以显着提高功率密度,从而进一步减轻重量并降低机器成本。我制造了一个定制的 3 kW 发电机来测试各种冷却技术所能实现的最大电流密度,并使用这些数据来支持高功率密度 12 MW 直驱风力涡轮发电机的分析设计。我还研究了增材制造的空气质量和糊料挤出工艺的建模。 • HP Inc 金属 3D 打印实习生 2019 年 5 月 - 2019 年 8 月 在 HP Inc 的第二次实习中,我致力于开发用于现场打印机监控的方法和指标,以改善分层缺陷和各向同性。粉末粘合剂喷射本质上是一个分层过程,这会导致烧结缺陷。我创建了一个 MATLAB 脚本来自动分析烧结横截面以确定定量打印指标 • HP Inc 金属 3D 打印实习生 2018 年 5 月 - 2018 年 8 月 在 HP Inc 工作期间,我开发了一种高速成像装置,以更好地了解 3D 打印过程。我研究了粉末粘合剂喷射应用中的粉末-粘合剂相互作用。金属打印提出了聚合物粉末-粘合剂喷射中未曾见过的独特挑战;因此,我的工作是为了更好地理解这些独特的挑战。 • RIT 硕士论文工作 2016 年 8 月 - 2018 年 5 月 在我的硕士论文中,我使用金属增材制造的微结构来增强池沸腾传热。RIT 与 Vader Systems 合作,获得了第一台液体磁喷射 3D 打印机(现为 Xerox ElemX)。该打印机使用线材将熔融的铝液滴一滴地喷射到构建平台上,以产生高沉积速率和高分辨率。在我的项目中,我使用这项技术构建了新颖的微结构,以利用增材制造实现的气泡设计将池沸腾传热提高多达 7 倍•微流体高级设计项目(HP 赞助)2017 年 8 月 - 2018 年 5 月通过 RIT 进行的多学科项目,我们小组在惠普公司的支持下提出了自己的项目。我们开发了一种方法来创建一种低成本的微流体装置以评估层流的混合。目前,很难混合层流状态(例如生物医学应用所需的层流状态)。通过在 FAB 中的硅晶片上创建集成电阻加热器,并与低成本封装方法接口实现密封,可以创建一个流动混合装置。混合机制来自于实现类似于 HP 专利热喷墨技术的局部亚稳态沸腾。该项目是一个正在进行的研究项目,旨在确定其可行性和影响混合的参数。• NREL 科学本科实验室实习生 2017 年 5 月 - 2017 年 8 月在 NREL 工作期间,我使用有限元分析 (ANSYS) 来确定减轻大型直驱发电机重量的潜力。这可以减少 24% 的质量,同时还可以将径向偏转减少 60%。最佳的添加方法是粉末粘合剂喷射,并使用多喷射打印创建实验模型以证明设计的可打印性。我们的研究产生了两份会议论文集和两项 ASME 论文奖。• 在 IBM 与高级热能效率实验室合作 2016 年 5 月 - 2016 年 8 月在 IBM,我的工作是密封一个实验性的两相测试回路,该回路之前出现泄漏,已停运一年半。这涉及使用与 Matlab 脚本交互的 LabVIEW 数据采集来确定 Swagelok 系统是否长时间保持真空。此外,我与其他实习生和热工程师合作设计了一张流量卡,以模拟主机中的实际压降。然后,这张流量卡被 3D 打印出来并进行测试,以查看它是否对齐